r"""This file is allowed to initialize CUDA context when imported.""" import functools import torch import torch.cuda from torch.testing._internal.common_utils import TEST_NUMBA import inspect import contextlib TEST_CUDA = torch.cuda.is_available() TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2 CUDA_DEVICE = TEST_CUDA and torch.device("cuda:0") # note: if ROCm is targeted, TEST_CUDNN is code for TEST_MIOPEN TEST_CUDNN = TEST_CUDA and torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE)) TEST_CUDNN_VERSION = torch.backends.cudnn.version() if TEST_CUDNN else 0 if TEST_NUMBA: import numba.cuda TEST_NUMBA_CUDA = numba.cuda.is_available() else: TEST_NUMBA_CUDA = False # Used below in `initialize_cuda_context_rng` to ensure that CUDA context and # RNG have been initialized. __cuda_ctx_rng_initialized = False # after this call, CUDA context and RNG must have been initialized on each GPU def initialize_cuda_context_rng(): global __cuda_ctx_rng_initialized assert TEST_CUDA, 'CUDA must be available when calling initialize_cuda_context_rng' if not __cuda_ctx_rng_initialized: # initialize cuda context and rng for memory tests for i in range(torch.cuda.device_count()): torch.randn(1, device="cuda:{}".format(i)) __cuda_ctx_rng_initialized = True # Test whether hardware TF32 math mode enabled. It is enabled only on: # - CUDA >= 11 # - arch >= Ampere def tf32_is_not_fp32(): if not torch.cuda.is_available() or torch.version.cuda is None: return False if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8: return False if int(torch.version.cuda.split('.')[0]) < 11: return False return True @contextlib.contextmanager def tf32_off(): old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32 try: torch.backends.cuda.matmul.allow_tf32 = False with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False): yield finally: torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul @contextlib.contextmanager def tf32_on(self, tf32_precision=1e-5): old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32 old_precison = self.precision try: torch.backends.cuda.matmul.allow_tf32 = True self.precision = tf32_precision with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True): yield finally: torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul self.precision = old_precison # This is a wrapper that wraps a test to run this test twice, one with # allow_tf32=True, another with allow_tf32=False. When running with # allow_tf32=True, it will use reduced precision as pecified by the # argument. For example: # @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) # @tf32_on_and_off(0.005) # def test_matmul(self, device, dtype): # a = ...; b = ...; # c = torch.matmul(a, b) # self.assertEqual(c, expected) # In the above example, when testing torch.float32 and torch.complex64 on CUDA # on a CUDA >= 11 build on an >=Ampere architecture, the matmul will be running at # TF32 mode and TF32 mode off, and on TF32 mode, the assertEqual will use reduced # precision to check values. def tf32_on_and_off(tf32_precision=1e-5): def with_tf32_disabled(self, function_call): with tf32_off(): function_call() def with_tf32_enabled(self, function_call): with tf32_on(self, tf32_precision): function_call() def wrapper(f): nargs = len(inspect.signature(f).parameters) if nargs == 2: @functools.wraps(f) def wrapped(self, device): if self.device_type == 'cuda' and tf32_is_not_fp32(): with_tf32_disabled(self, lambda: f(self, device)) with_tf32_enabled(self, lambda: f(self, device)) else: f(self, device) else: assert nargs == 3, "this decorator only support function with signature (self, device) or (self, device, dtype)" @functools.wraps(f) def wrapped(self, device, dtype): if self.device_type == 'cuda' and dtype in {torch.float32, torch.complex64} and tf32_is_not_fp32(): with_tf32_disabled(self, lambda: f(self, device, dtype)) with_tf32_enabled(self, lambda: f(self, device, dtype)) else: f(self, device, dtype) return wrapped return wrapper