#include #include #include #include #include #include #include #include #include #include #include #include using namespace torch::autograd; using namespace torch::nn; struct ParallelTest : torch::test::SeedingFixture {}; TEST_F(ParallelTest, DifferentiableScatter_MultiCUDA) { Scatter scatter( {torch::Device(torch::kCUDA, 0), torch::Device(torch::kCUDA, 1)}); auto input = torch::ones(10, torch::requires_grad(true)); auto output = scatter.apply({input}); ASSERT_EQ(output.size(), 2); ASSERT_EQ(output[0].size(0), 5); ASSERT_EQ(output[1].size(0), 5); ASSERT_TRUE(torch::cat({output[0].to(torch::kCPU), output[1].to(torch::kCPU)}) .allclose(input)); torch::Tensor sum = output[0].to({torch::kCUDA, 1}) + output[1]; sum.backward(); ASSERT_TRUE(input.grad().defined()); ASSERT_TRUE(input.grad().device().is_cpu()); ASSERT_EQ(input.grad().sum().item(), 10); } TEST_F(ParallelTest, DifferentiableGather_MultiCUDA) { Gather gather(torch::Device(torch::kCUDA, 1)); auto a = torch::ones(5, torch::requires_grad(true).device(torch::kCUDA, 0)); auto b = torch::ones(5, torch::requires_grad(true).device(torch::kCUDA, 1)); auto outputs = gather.apply({a, b}); ASSERT_EQ(outputs.size(), 1); torch::Tensor output = outputs.front(); ASSERT_EQ(output.size(0), 10); ASSERT_EQ(output.device(), torch::Device(torch::kCUDA, 1)); auto chunks = output.chunk(2); ASSERT_TRUE(chunks[0].to({torch::kCUDA, 0}).allclose(a)); ASSERT_TRUE(chunks[1].allclose(b)); output.backward(); ASSERT_TRUE(a.grad().defined()); ASSERT_EQ(a.grad().device(), torch::Device(torch::kCUDA, 0)); ASSERT_EQ(a.grad().sum().item(), 5); ASSERT_TRUE(b.grad().defined()); ASSERT_EQ(b.grad().device(), torch::Device(torch::kCUDA, 1)); ASSERT_EQ(b.grad().sum().item(), 5); } TEST_F(ParallelTest, Replicate_MultiCUDA) { Linear linear(3, 4); auto replicas = parallel::replicate( linear, {torch::Device(torch::kCUDA, 0), torch::Device(torch::kCUDA, 1)}); ASSERT_EQ(replicas.size(), 2); auto original_parameters = linear->parameters(); auto replica1_parameters = replicas[0]->parameters(); for (auto& parameter : replica1_parameters) { ASSERT_EQ(parameter.device(), torch::Device(torch::kCUDA, 0)); } replicas[0]->to(torch::kCPU); ASSERT_EQ(replica1_parameters.size(), original_parameters.size()); for (size_t i = 0; i < original_parameters.size(); ++i) { ASSERT_TRUE(replica1_parameters[i].allclose(original_parameters[i])); ASSERT_TRUE( replica1_parameters[i].data() != original_parameters[i].data()); } auto replica2_parameters = replicas[1]->parameters(); for (auto& parameter : replica2_parameters) { ASSERT_EQ(parameter.device(), torch::Device(torch::kCUDA, 1)); } replicas[1]->to(torch::kCPU); ASSERT_EQ(replica2_parameters.size(), original_parameters.size()); for (size_t i = 0; i < original_parameters.size(); ++i) { ASSERT_TRUE(replica2_parameters[i].allclose(original_parameters[i])); ASSERT_TRUE( replica2_parameters[i].data() != original_parameters[i].data()); } } TEST_F(ParallelTest, ParallelApply_MultiCUDA) { Linear a(3, 4); Linear b(std::dynamic_pointer_cast(a->clone())); b->to({torch::kCUDA, 0}); Linear c(std::dynamic_pointer_cast(a->clone())); c->to({torch::kCUDA, 1}); std::vector modules = {a, b, c}; std::vector inputs = { torch::ones({2, 3}), torch::ones({2, 3}, torch::device({torch::kCUDA, 0})), torch::ones({2, 3}, torch::device({torch::kCUDA, 1}))}; auto outputs = parallel::parallel_apply(modules, inputs); ASSERT_EQ(outputs.size(), 3); ASSERT_TRUE(outputs[0].device().is_cpu()); ASSERT_EQ(outputs[1].device(), torch::Device(torch::kCUDA, 0)); ASSERT_TRUE(outputs[1].to(torch::kCPU).allclose(outputs[0])); ASSERT_EQ(outputs[2].device(), torch::Device(torch::kCUDA, 1)); ASSERT_TRUE(outputs[2].to(torch::kCPU).allclose(outputs[0])); } TEST_F(ParallelTest, ParallelApplyWithDifferentOutputDevice_MultiCUDA) { struct M : torch::nn::Module { torch::Tensor forward(torch::Tensor input) { return torch::ones(5, torch::kInt32); } }; std::vector> modules = { std::make_shared(), std::make_shared(), std::make_shared()}; std::vector inputs = { torch::empty({}), torch::empty({}), torch::empty({})}; std::vector devices = { {torch::kCUDA, 1}, {torch::kCUDA, 0}, {torch::kCPU}}; auto outputs = parallel::parallel_apply(modules, inputs, devices); ASSERT_EQ(outputs.size(), 3); ASSERT_TRUE(outputs[0].device().is_cuda()); ASSERT_EQ(outputs[0].device(), torch::Device(torch::kCUDA, 1)); ASSERT_TRUE(outputs[1].device().is_cuda()); ASSERT_EQ(outputs[1].device(), torch::Device(torch::kCUDA, 0)); ASSERT_TRUE(outputs[2].device().is_cpu()); } TEST_F(ParallelTest, ParallelApplyRethrowsException_MultiCUDA) { struct M : torch::nn::Cloneable { void reset() override {} torch::Tensor forward(torch::Tensor input) { throw std::runtime_error("Badness!"); } }; auto m = std::make_shared(); auto input = torch::ones({10, 3}); ASSERT_THROWS_WITH(parallel::data_parallel(m, input), "Badness!"); } TEST_F( ParallelTest, DataParallelPlacesTheOutputOnTheRequestedDevice_MultiCUDA) { struct M : torch::nn::Cloneable { void reset() override {} torch::Tensor forward(torch::Tensor input) { // The returned tensor should be on the output device. return torch::ones(3); } }; auto m = std::make_shared(); auto input = torch::ones({10, 3}); { auto output = parallel::data_parallel( m, input, /*devices=*/torch::nullopt, /*output_device=*/torch::Device(torch::kCUDA, 1)); ASSERT_TRUE(output.defined()); ASSERT_TRUE(output.device().is_cuda()); ASSERT_EQ(output.device().index(), 1); } { // Verify for the single-device case (where we don't scatter/gather). auto output = parallel::data_parallel( m, input, /*devices=*/std::vector{torch::Device(torch::kCUDA, 0)}, /*output_device=*/torch::Device(torch::kCUDA, 1)); ASSERT_TRUE(output.defined()); ASSERT_TRUE(output.device().is_cuda()); ASSERT_EQ(output.device().index(), 1); } } TEST_F(ParallelTest, DataParallelUsesAllAvailableCUDADevices_CUDA) { struct M : torch::nn::Cloneable { void reset() override {} torch::Tensor forward(torch::Tensor input) { return torch::tensor(input.device().index()); } }; auto m = std::make_shared(); auto input = torch::ones({10, 3}); auto output = parallel::data_parallel(m, input); const auto device_count = torch::cuda::device_count(); ASSERT_EQ(output.numel(), device_count); for (size_t i = 0; i < device_count; ++i) { ASSERT_EQ(output[i].item(), i); } }