import collections.abc import functools import numbers from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Type, Union, cast from types import SimpleNamespace import torch from torch import Tensor from ._core import _unravel_index __all__ = ["assert_equal", "assert_close"] # The UsageError should be raised in case the test function is not used correctly. With this the user is able to # differentiate between a test failure (there is a bug in the tested code) and a test error (there is a bug in the # test). class UsageError(Exception): pass _TestingError = Union[AssertionError, UsageError] class _TestingErrorMeta(NamedTuple): type: Type[_TestingError] msg: str def amend_msg(self, prefix: str = "", postfix: str = "") -> "_TestingErrorMeta": return self._replace(msg=f"{prefix}{self.msg}{postfix}") def to_error(self) -> _TestingError: return self.type(self.msg) # This is copy-pasted from torch.testing._internal.common_utils.TestCase.dtype_precisions. With this we avoid a # dependency on torch.testing._internal at import. See # https://github.com/pytorch/pytorch/pull/54769#issuecomment-813174256 for details. # {dtype: (rtol, atol)} _DTYPE_PRECISIONS = { torch.float16: (0.001, 1e-5), torch.bfloat16: (0.016, 1e-5), torch.float32: (1.3e-6, 1e-5), torch.float64: (1e-7, 1e-7), torch.complex32: (0.001, 1e-5), torch.complex64: (1.3e-6, 1e-5), torch.complex128: (1e-7, 1e-7), } def _get_default_rtol_and_atol(actual: Tensor, expected: Tensor) -> Tuple[float, float]: dtype = actual.dtype if actual.dtype == expected.dtype else torch.promote_types(actual.dtype, expected.dtype) return _DTYPE_PRECISIONS.get(dtype, (0.0, 0.0)) def _check_complex_components_individually( check_tensors: Callable[..., Optional[_TestingErrorMeta]] ) -> Callable[..., Optional[_TestingErrorMeta]]: """Decorates real-valued tensor check functions to handle complex components individually. If the inputs are not complex, this decorator is a no-op. Args: check_tensors (Callable[[Tensor, Tensor], Optional[_TestingErrorMeta]]): Tensor check function for real-valued tensors. """ @functools.wraps(check_tensors) def wrapper(actual: Tensor, expected: Tensor, **kwargs: Any) -> Optional[_TestingErrorMeta]: if "equal_nan" in kwargs: if kwargs["equal_nan"] == "relaxed": relaxed_complex_nan = True kwargs["equal_nan"] = True else: relaxed_complex_nan = False kwargs["equal_nan"] = bool(kwargs["equal_nan"]) else: relaxed_complex_nan = False if actual.dtype not in (torch.complex32, torch.complex64, torch.complex128): return check_tensors(actual, expected, **kwargs) # type: ignore[call-arg] if relaxed_complex_nan: actual, expected = [ t.clone().masked_fill( t.real.isnan() | t.imag.isnan(), complex(float("NaN"), float("NaN")) # type: ignore[call-overload] ) for t in (actual, expected) ] error_meta = check_tensors(actual.real, expected.real, **kwargs) # type: ignore[call-arg] if error_meta: return error_meta.amend_msg(postfix="\n\nThe failure occurred for the real part.") error_meta = check_tensors(actual.imag, expected.imag, **kwargs) # type: ignore[call-arg] if error_meta: return error_meta.amend_msg(postfix="\n\nThe failure occurred for the imaginary part.") return None return wrapper def _check_supported_tensor(input: Tensor) -> Optional[_TestingErrorMeta]: """Checks if the tensors are supported by the current infrastructure. All checks are temporary and will be relaxed in the future. Returns: (Optional[_TestingErrorMeta]): If check did not pass. """ if input.is_quantized: return _TestingErrorMeta(UsageError, "Comparison for quantized tensors is not supported yet.") if input.is_sparse: return _TestingErrorMeta(UsageError, "Comparison for sparse tensors is not supported yet.") return None def _check_attributes_equal( actual: Tensor, expected: Tensor, *, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, ) -> Optional[_TestingErrorMeta]: """Checks if the attributes of two tensors match. Always checks the :attr:`~torch.Tensor.shape`. Checks for :attr:`~torch.Tensor.device`, :attr:`~torch.Tensor.dtype`, and :meth:`~torch.Tensor.stride` are optional and can be disabled. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. check_device (bool): If ``True`` (default), checks that both :attr:`actual` and :attr:`expected` are on the same :attr:`~torch.Tensor.device`. check_dtype (bool): If ``True`` (default), checks that both :attr:`actual` and :attr:`expected` have the same ``dtype``. check_stride (bool): If ``True`` (default), checks that both :attr:`actual` and :attr:`expected` have the same stride. Returns: (Optional[_TestingErrorMeta]): If checks did not pass. """ msg_fmtstr = "The values for attribute '{}' do not match: {} != {}." if actual.shape != expected.shape: return _TestingErrorMeta(AssertionError, msg_fmtstr.format("shape", actual.shape, expected.shape)) if check_device and actual.device != expected.device: return _TestingErrorMeta(AssertionError, msg_fmtstr.format("device", actual.device, expected.device)) if check_dtype and actual.dtype != expected.dtype: return _TestingErrorMeta(AssertionError, msg_fmtstr.format("dtype", actual.dtype, expected.dtype)) if check_stride and actual.stride() != expected.stride(): return _TestingErrorMeta(AssertionError, msg_fmtstr.format("stride()", actual.stride(), expected.stride())) return None def _equalize_attributes(actual: Tensor, expected: Tensor) -> Tuple[Tensor, Tensor]: """Equalizes some attributes of two tensors for value comparison. If :attr:`actual` and :attr:`expected` - are not on the same :attr:`~torch.Tensor.device`, they are moved CPU memory, and - do not have the same ``dtype``, they are promoted to a common ``dtype`` (according to :func:`torch.promote_types`) Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. Returns: Tuple(Tensor, Tensor): Equalized tensors. """ if actual.device != expected.device: actual = actual.cpu() expected = expected.cpu() if actual.dtype != expected.dtype: dtype = torch.promote_types(actual.dtype, expected.dtype) actual = actual.to(dtype) expected = expected.to(dtype) return actual, expected DiagnosticInfo = SimpleNamespace def _trace_mismatches(actual: Tensor, expected: Tensor, mismatches: Tensor) -> DiagnosticInfo: """Traces mismatches and returns diagnostic information. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. mismatches (Tensor): Boolean mask of the same shape as :attr:`actual` and :attr:`expected` that indicates the location of mismatches. Returns: (DiagnosticInfo): Mismatch diagnostics with the following attributes: - ``number_of_elements`` (int): Number of elements in each tensor being compared. - ``total_mismatches`` (int): Total number of mismatches. - ``mismatch_ratio`` (float): Total mismatches divided by number of elements. - ``max_abs_diff`` (Union[int, float]): Greatest absolute difference of the inputs. - ``max_abs_diff_idx`` (Union[int, Tuple[int, ...]]): Index of greatest absolute difference. - ``max_rel_diff`` (Union[int, float]): Greatest relative difference of the inputs. - ``max_rel_diff_idx`` (Union[int, Tuple[int, ...]]): Index of greatest relative difference. For ``max_abs_diff`` and ``max_rel_diff`` the type depends on the :attr:`~torch.Tensor.dtype` of the inputs. """ number_of_elements = mismatches.numel() total_mismatches = torch.sum(mismatches).item() mismatch_ratio = total_mismatches / number_of_elements dtype = torch.float64 if actual.dtype.is_floating_point else torch.int64 a_flat = actual.flatten().to(dtype) b_flat = expected.flatten().to(dtype) matches_flat = ~mismatches.flatten() abs_diff = torch.abs(a_flat - b_flat) # Ensure that only mismatches are used for the max_abs_diff computation abs_diff[matches_flat] = 0 max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0) rel_diff = abs_diff / torch.abs(b_flat) # Ensure that only mismatches are used for the max_rel_diff computation rel_diff[matches_flat] = 0 max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0) return SimpleNamespace( number_of_elements=number_of_elements, total_mismatches=cast(int, total_mismatches), mismatch_ratio=mismatch_ratio, max_abs_diff=max_abs_diff.item(), max_abs_diff_idx=_unravel_index(max_abs_diff_flat_idx.item(), mismatches.shape), max_rel_diff=max_rel_diff.item(), max_rel_diff_idx=_unravel_index(max_rel_diff_flat_idx.item(), mismatches.shape), ) @_check_complex_components_individually def _check_values_equal( actual: Tensor, expected: Tensor, *, msg: Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]] = None, ) -> Optional[_TestingErrorMeta]: """Checks if the values of two tensors are bitwise equal. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. msg (Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]]): Optional error message. Can be passed as callable in which case it will be called with the inputs and the result of :func:`_trace_mismatches`. Returns: (Optional[AssertionError]): If check did not pass. """ mismatches = torch.ne(actual, expected) if not torch.any(mismatches): return None trace = _trace_mismatches(actual, expected, mismatches) if msg is None: msg = ( f"Tensors are not equal!\n\n" f"Mismatched elements: {trace.total_mismatches} / {trace.number_of_elements} ({trace.mismatch_ratio:.1%})\n" f"Greatest absolute difference: {trace.max_abs_diff} at {trace.max_abs_diff_idx}\n" f"Greatest relative difference: {trace.max_rel_diff} at {trace.max_rel_diff_idx}" ) elif callable(msg): msg = msg(actual, expected, trace) return _TestingErrorMeta(AssertionError, msg) @_check_complex_components_individually def _check_values_close( actual: Tensor, expected: Tensor, *, rtol: float, atol: float, equal_nan: bool, msg: Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]], ) -> Optional[_TestingErrorMeta]: """Checks if the values of two tensors are close up to a desired tolerance. Args: actual (Tensor): Actual tensor. expected (Tensor): Expected tensor. rtol (float): Relative tolerance. atol (float): Absolute tolerance. equal_nan (bool): If ``True``, two ``NaN`` values will be considered equal. msg (Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]]): Optional error message. Can be passed as callable in which case it will be called with the inputs and the result of :func:`_trace_mismatches`. Returns: (Optional[AssertionError]): If check did not pass. """ mismatches = ~torch.isclose(actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan) if not torch.any(mismatches): return None trace = _trace_mismatches(actual, expected, mismatches) if msg is None: msg = ( f"Tensors are not close!\n\n" f"Mismatched elements: {trace.total_mismatches} / {trace.number_of_elements} ({trace.mismatch_ratio:.1%})\n" f"Greatest absolute difference: {trace.max_abs_diff} at {trace.max_abs_diff_idx} (up to {atol} allowed)\n" f"Greatest relative difference: {trace.max_rel_diff} at {trace.max_rel_diff_idx} (up to {rtol} allowed)" ) elif callable(msg): msg = msg(actual, expected, trace) return _TestingErrorMeta(AssertionError, msg) def _check_tensors_equal( actual: Tensor, expected: Tensor, *, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, msg: Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]] = None, ) -> Optional[_TestingErrorMeta]: """Checks that the values of two tensors are bitwise equal. For complex tensors the check is performed on the real and imaginary component separately. Optionally, checks that some attributes of tensor pairs are equal. For a description of the parameters see :func:`assert_equal`. Returns: Optional[_TestingErrorMeta]: If checks did not pass. """ error_meta = _check_attributes_equal( actual, expected, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride ) if error_meta: return error_meta actual, expected = _equalize_attributes(actual, expected) error_meta = _check_values_equal(actual, expected, msg=msg) if error_meta: return error_meta return None def _check_tensors_close( actual: Tensor, expected: Tensor, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = False, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, msg: Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]] = None, ) -> Optional[_TestingErrorMeta]: r"""Checks that the values of :attr:`actual` and :attr:`expected` are close. If :attr:`actual` and :attr:`expected` are real-valued and finite, they are considered close if .. code:: torch.abs(actual - expected) <= (atol + rtol * expected) and they have the same device (if :attr:`check_device` is ``True``), same dtype (if :attr:`check_dtype` is ``True``), and the same stride (if :attr:`check_stride` is ``True``). Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are only considered equal to each other if :attr:`equal_nan` is ``True``. For a description of the parameters see :func:`assert_equal`. Returns: Optional[_TestingErrorMeta]: If checks did not pass. """ if (rtol is None) ^ (atol is None): # We require both tolerance to be omitted or specified, because specifying only one might lead to surprising # results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0. return _TestingErrorMeta( UsageError, f"Both 'rtol' and 'atol' must be either specified or omitted, but got rtol={rtol} and atol={atol} instead.", ) elif rtol is None or atol is None: rtol, atol = _get_default_rtol_and_atol(actual, expected) error_meta = _check_attributes_equal( actual, expected, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride ) if error_meta: return error_meta actual, expected = _equalize_attributes(actual, expected) if (rtol == 0.0) and (atol == 0.0): error_meta = _check_values_equal(actual, expected, msg=msg) else: error_meta = _check_values_close(actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan, msg=msg) if error_meta: return error_meta return None class _TensorPair(NamedTuple): actual: Tensor expected: Tensor _SEQUENCE_MSG_FMTSTR = "The failure occurred at index {} of the sequences." _MAPPING_MSG_FMTSTR = "The failure occurred for key '{}' of the mappings." def _check_pair( pair: Union[_TensorPair, List, Dict], check_tensors: Callable[[Any, Any], Optional[_TestingErrorMeta]], ) -> Optional[_TestingErrorMeta]: """Checks input pairs. :class:`list`'s or :class:`dict`'s are checked elementwise. Checking is performed recursively and thus nested containers are supported. Args: pair (Union[_TensorPair, List, Dict]): Input pair. check_tensors (Callable[[Any, Any], Optional[Exception]]): Callable used to check if a tensor pair matches. Returns: (Optional[_TestingErrorMeta]): Return value of :attr:`check_tensors`. """ if isinstance(pair, list): for idx, pair_item in enumerate(pair): error_meta = _check_pair(pair_item, check_tensors) if error_meta: return error_meta.amend_msg(postfix=f"\n\n{_SEQUENCE_MSG_FMTSTR.format(idx)}") else: return None elif isinstance(pair, dict): for key, pair_item in pair.items(): error_meta = _check_pair(pair_item, check_tensors) if error_meta: return error_meta.amend_msg(postfix=f"\n\n{_MAPPING_MSG_FMTSTR.format(key)}") else: return None else: # isinstance(pair, TensorPair) return check_tensors(pair.actual, pair.expected) def _to_tensor(array_or_scalar_like: Any) -> Tuple[Optional[_TestingErrorMeta], Optional[Tensor]]: """Converts a scalar-or-array-like to a :class:`~torch.Tensor`. Args: array_or_scalar_like (Any): Scalar-or-array-like. Returns: (Tuple[Optional[_TestingErrorMeta], Optional[Tensor]]): The two elements are orthogonal, i.e. if the first is ``None`` the second will be valid and vice versa. Returns :class:`_TestingErrorMeta` if no tensor can be constructed from :attr:`actual` or :attr:`expected`. Additionally, returns any error meta from :func:`_check_supported_tensor`. """ error_meta: Optional[_TestingErrorMeta] if isinstance(array_or_scalar_like, Tensor): tensor = array_or_scalar_like else: try: tensor = torch.as_tensor(array_or_scalar_like) except Exception: error_meta = _TestingErrorMeta( UsageError, f"No tensor can be constructed from type {type(array_or_scalar_like)}." ) return error_meta, None error_meta = _check_supported_tensor(tensor) if error_meta: return error_meta, None return None, tensor def _to_tensor_pair(actual: Any, expected: Any) -> Tuple[Optional[_TestingErrorMeta], Optional[_TensorPair]]: """Converts a scalar-or-array-like pair to a :class:`_TensorPair`. Args: actual (Any): Actual array-or-scalar-like. expected (Any): Expected array-or-scalar-like. Returns: (Optional[_TestingErrorMeta], Optional[_TensorPair]): The two elements are orthogonal, i.e. if the first is ``None`` the second will not and vice versa. Returns :class:`_TestingErrorMeta` if :attr:`actual` and :attr:`expected` are not scalars and do not have the same type. Additionally, returns any error meta from :func:`_to_tensor`. """ error_meta: Optional[_TestingErrorMeta] # We exclude numbers here, since numbers of different type, e.g. int vs. float, should be treated the same as # tensors with different dtypes. Without user input, passing numbers of different types will still fail, but this # can be disabled by setting `check_dtype=False`. if type(actual) is not type(expected) and not ( isinstance(actual, numbers.Number) and isinstance(expected, numbers.Number) ): error_meta = _TestingErrorMeta( AssertionError, f"Except for scalars, type equality is required, but got {type(actual)} and {type(expected)} instead.", ) return error_meta, None error_meta, actual = _to_tensor(actual) if error_meta: return error_meta, None error_meta, expected = _to_tensor(expected) if error_meta: return error_meta, None return None, _TensorPair(actual, expected) def _parse_inputs( actual: Any, expected: Any ) -> Tuple[Optional[_TestingErrorMeta], Optional[Union[_TensorPair, List, Dict]]]: """Parses the positional inputs by constructing :class:`_TensorPair`'s from corresponding array-or-scalar-likes. :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s are parsed elementwise. Parsing is performed recursively and thus nested containers are supported. The hierarchy of the containers is preserved, but sequences are returned as :class:`list` and mappings as :class:`dict`. Args: actual (Any): Actual input. expected (Any): Expected input. Returns: (Tuple[Optional[_TestingErrorMeta], Optional[Union[_TensorPair, List, Dict]]]): The two elements are orthogonal, i.e. if the first is ``None`` the second will be valid and vice versa. Returns :class:`_TestingErrorMeta` if the length of two sequences or the keys of two mappings do not match. Additionally, returns any error meta from :func:`_to_tensor_pair`. """ error_meta: Optional[_TestingErrorMeta] # We explicitly exclude str's here since they are self-referential and would cause an infinite recursion loop: # "a" == "a"[0][0]... if ( isinstance(actual, collections.abc.Sequence) and not isinstance(actual, str) and isinstance(expected, collections.abc.Sequence) and not isinstance(expected, str) ): actual_len = len(actual) expected_len = len(expected) if actual_len != expected_len: error_meta = _TestingErrorMeta( AssertionError, f"The length of the sequences mismatch: {actual_len} != {expected_len}" ) return error_meta, None pair_list = [] for idx in range(actual_len): error_meta, pair = _parse_inputs(actual[idx], expected[idx]) if error_meta: error_meta = error_meta.amend_msg(postfix=f"\n\n{_SEQUENCE_MSG_FMTSTR.format(idx)}") return error_meta, None pair_list.append(pair) else: return None, pair_list elif isinstance(actual, collections.abc.Mapping) and isinstance(expected, collections.abc.Mapping): actual_keys = set(actual.keys()) expected_keys = set(expected.keys()) if actual_keys != expected_keys: missing_keys = expected_keys - actual_keys additional_keys = actual_keys - expected_keys error_meta = _TestingErrorMeta( AssertionError, f"The keys of the mappings do not match:\n" f"Missing keys in the actual mapping: {sorted(missing_keys)}\n" f"Additional keys in the actual mapping: {sorted(additional_keys)}", ) return error_meta, None pair_dict = {} for key in sorted(actual_keys): error_meta, pair = _parse_inputs(actual[key], expected[key]) if error_meta: error_meta = error_meta.amend_msg(postfix=f"\n\n{_MAPPING_MSG_FMTSTR.format(key)}") return error_meta, None pair_dict[key] = pair else: return None, pair_dict else: return _to_tensor_pair(actual, expected) def assert_equal( actual: Any, expected: Any, *, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, msg: Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]] = None, ) -> None: """Asserts that the values of tensor pairs are bitwise equal. For complex tensors the check is performed on the real and imaginary component separately. Optionally, checks that some attributes of tensor pairs are equal. Also supports array-or-scalar-like inputs from which a :class:`torch.Tensor` can be constructed with :func:`torch.as_tensor`. Still, requires type equality, i.e. comparing a :class:`torch.Tensor` and a :class:`numpy.ndarray` is not supported. In case both inputs are :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s the checks are performed elementwise. Args: actual (Any): Actual input. expected (Any): Expected input. check_device (bool): If ``True`` (default), asserts that each tensor pair is on the same :attr:`~torch.Tensor.device` memory. If this check is disabled **and** it is not on the same :attr:`~torch.Tensor.device` memory, it is moved CPU memory before the values are compared. check_dtype (bool): If ``True`` (default), asserts that each tensor pair has the same :attr:`~torch.Tensor.dtype`. If this check is disabled it does not have the same :attr:`~torch.Tensor.dtype`, it is copied to the :class:`~torch.dtype` returned by :func:`torch.promote_types` before the values are compared. check_stride (bool): If ``True`` (default), asserts that each tensor pair has the same stride. msg (Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]]): Optional error message to use if the values of a tensor pair mismatch. Can be passed as callable in which case it will be called with the tensor pair and a namespace of diagnostic info about the mismatches. See below for details. Raises: UsageError: If an array-or-scalar-like pair has different types. UsageError: If a :class:`torch.Tensor` can't be constructed from an array-or-scalar-like. UsageError: If any tensor is quantized or sparse. This is a temporary restriction and will be relaxed in the future. AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match. AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match. AssertionError: If a tensor pair does not have the same :attr:`~torch.Tensor.shape`. AssertionError: If :attr:`check_device`, but a tensor pair is not on the same :attr:`~torch.Tensor.device` memory. AssertionError: If :attr:`check_dtype`, but a tensor pair does not have the same :attr:`~torch.Tensor.dtype`. AssertionError: If :attr:`check_stride`, but a tensor pair does not have the same stride. AssertionError: If the values of a tensor pair are not bitwise equal. The namespace that will be passed to :attr:`msg` if its a callable comprises the following attributes: - total_elements (int): Total number of values. - total_mismatches (int): Total number of mismatches. - mismatch_ratio (float): Quotient of total mismatches and total elements. - max_abs_diff (Union[int, float]): Greatest absolute difference of the inputs. - max_abs_diff_idx (Union[int, Tuple[int, ...]]): Index of greatest absolute difference. - max_rel_diff (Union[int, float]): Greatest relative difference of the inputs. - max_rel_diff_idx (Union[int, Tuple[int, ...]]): Index of greatest relative difference. For ``max_abs_diff`` and ``max_rel_diff`` the type depends on the :attr:`~torch.Tensor.dtype` of the inputs. .. seealso:: To assert that the values of a tensor pair are close but are not required to be bitwise equal, use :func:`assert_close` instead. """ # Hide this function from `pytest`'s traceback __tracebackhide__ = True error_meta, pair = _parse_inputs(actual, expected) if error_meta: raise error_meta.to_error() else: pair = cast(Union[_TensorPair, List, Dict], pair) check_tensors = functools.partial( _check_tensors_equal, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride, msg=msg, ) error_meta = _check_pair(pair, check_tensors) if error_meta: raise error_meta.to_error() def assert_close( actual: Any, expected: Any, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: Union[bool, str] = False, check_device: bool = True, check_dtype: bool = True, check_stride: bool = True, msg: Optional[Union[str, Callable[[Tensor, Tensor, SimpleNamespace], str]]] = None, ) -> None: r"""Asserts that :attr:`actual` and :attr:`expected` are close. If :attr:`actual` and :attr:`expected` are real-valued and finite, they are considered close if .. math:: \lvert \text{actual} - \text{expected} \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert \text{expected} \rvert and they have the same :attr:`~torch.Tensor.device` (if :attr:`check_device` is ``True``), same ``dtype`` (if :attr:`check_dtype` is ``True``), and the same stride (if :attr:`check_stride` is ``True``). Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are only considered equal to each other if :attr:`equal_nan` is ``True``. If :attr:`actual` and :attr:`expected` are complex-valued, they are considered close if both their real and imaginary components are considered close according to the definition above. :attr:`actual` and :attr:`expected` can be :class:`~torch.Tensor`'s or any array-or-scalar-like of the same type, from which :class:`torch.Tensor`'s can be constructed with :func:`torch.as_tensor`. In addition, :attr:`actual` and :attr:`expected` can be :class:`~collections.abc.Sequence`'s or :class:`~collections.abc.Mapping`'s in which case they are considered close if their structure matches and all their elements are considered close according to the above definition. Args: actual (Any): Actual input. expected (Any): Expected input. rtol (Optional[float]): Relative tolerance. If specified :attr:`atol` must also be specified. If omitted, default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table. atol (Optional[float]): Absolute tolerance. If specified :attr:`rtol` must also be specified. If omitted, default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table. equal_nan (Union[bool, str]): If ``True``, two ``NaN`` values will be considered equal. If ``"relaxed"``, complex values are considered as ``NaN`` if either the real **or** imaginary component is ``NaN``. check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same :attr:`~torch.Tensor.device`. If this check is disabled, tensors on different :attr:`~torch.Tensor.device`'s are moved to the CPU before being compared. check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to :func:`torch.promote_types`) before being compared. check_stride (bool): If ``True`` (default), asserts that corresponding tensors have the same stride. msg (Optional[Union[str, Callable[[Tensor, Tensor, DiagnosticInfo], str]]]): Optional error message to use if the values of corresponding tensors mismatch. Can be passed as callable in which case it will be called with the mismatching tensors and a namespace of diagnostic info about the mismatches. See below for details. Raises: UsageError: If a :class:`torch.Tensor` can't be constructed from an array-or-scalar-like. UsageError: If any tensor is quantized or sparse. This is a temporary restriction and will be relaxed in the future. UsageError: If only :attr:`rtol` or :attr:`atol` is specified. AssertionError: If corresponding array-likes have different types. AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match. AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match. AssertionError: If corresponding tensors do not have the same :attr:`~torch.Tensor.shape`. AssertionError: If :attr:`check_device`, but corresponding tensors are not on the same :attr:`~torch.Tensor.device`. AssertionError: If :attr:`check_dtype`, but corresponding tensors do not have the same ``dtype``. AssertionError: If :attr:`check_stride`, but corresponding tensors do not have the same stride. AssertionError: If the values of corresponding tensors are not close. The following table displays the default ``rtol`` and ``atol`` for different ``dtype``'s. Note that the ``dtype`` refers to the promoted type in case :attr:`actual` and :attr:`expected` do not have the same ``dtype``. +---------------------------+------------+----------+ | ``dtype`` | ``rtol`` | ``atol`` | +===========================+============+==========+ | :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` | +---------------------------+------------+----------+ | :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` | +---------------------------+------------+----------+ | :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` | +---------------------------+------------+----------+ | other | ``0.0`` | ``0.0`` | +---------------------------+------------+----------+ The namespace of diagnostic information that will be passed to :attr:`msg` if its a callable has the following attributes: - ``number_of_elements`` (int): Number of elements in each tensor being compared. - ``total_mismatches`` (int): Total number of mismatches. - ``mismatch_ratio`` (float): Total mismatches divided by number of elements. - ``max_abs_diff`` (Union[int, float]): Greatest absolute difference of the inputs. - ``max_abs_diff_idx`` (Union[int, Tuple[int, ...]]): Index of greatest absolute difference. - ``max_rel_diff`` (Union[int, float]): Greatest relative difference of the inputs. - ``max_rel_diff_idx`` (Union[int, Tuple[int, ...]]): Index of greatest relative difference. For ``max_abs_diff`` and ``max_rel_diff`` the type depends on the :attr:`~torch.Tensor.dtype` of the inputs. Examples: >>> # tensor to tensor comparison >>> expected = torch.tensor([1e0, 1e-1, 1e-2]) >>> actual = torch.acos(torch.cos(expected)) >>> torch.testing.assert_close(actual, expected) >>> # scalar to scalar comparison >>> import math >>> expected = math.sqrt(2.0) >>> actual = 2.0 / math.sqrt(2.0) >>> torch.testing.assert_close(actual, expected) >>> # numpy array to numpy array comparison >>> import numpy as np >>> expected = np.array([1e0, 1e-1, 1e-2]) >>> actual = np.arccos(np.cos(expected)) >>> torch.testing.assert_close(actual, expected) >>> # sequence to sequence comparison >>> import numpy as np >>> # The types of the sequences do not have to match. They only have to have the same >>> # length and their elements have to match. >>> expected = [torch.tensor([1.0]), 2.0, np.array(3.0)] >>> actual = tuple(expected) >>> torch.testing.assert_close(actual, expected) >>> # mapping to mapping comparison >>> from collections import OrderedDict >>> import numpy as np >>> foo = torch.tensor(1.0) >>> bar = 2.0 >>> baz = np.array(3.0) >>> # The types and a possible ordering of mappings do not have to match. They only >>> # have to have the same set of keys and their elements have to match. >>> expected = OrderedDict([("foo", foo), ("bar", bar), ("baz", baz)]) >>> actual = {"baz": baz, "bar": bar, "foo": foo} >>> torch.testing.assert_close(actual, expected) >>> # Different input types are never considered close. >>> expected = torch.tensor([1.0, 2.0, 3.0]) >>> actual = expected.numpy() >>> torch.testing.assert_close(actual, expected) AssertionError: Except for scalars, type equality is required, but got and instead. >>> # Scalars of different types are an exception and can be compared with >>> # check_dtype=False. >>> torch.testing.assert_close(1.0, 1, check_dtype=False) >>> # NaN != NaN by default. >>> expected = torch.tensor(float("Nan")) >>> actual = expected.clone() >>> torch.testing.assert_close(actual, expected) AssertionError: Tensors are not close! >>> torch.testing.assert_close(actual, expected, equal_nan=True) >>> # If equal_nan=True, the real and imaginary NaN's of complex inputs have to match. >>> expected = torch.tensor(complex(float("NaN"), 0)) >>> actual = torch.tensor(complex(0, float("NaN"))) >>> torch.testing.assert_close(actual, expected, equal_nan=True) AssertionError: Tensors are not close! >>> # If equal_nan="relaxed", however, then complex numbers are treated as NaN if any >>> # of the real or imaginary component is NaN. >>> torch.testing.assert_close(actual, expected, equal_nan="relaxed") >>> expected = torch.tensor([1.0, 2.0, 3.0]) >>> actual = torch.tensor([1.0, 4.0, 5.0]) >>> # The default mismatch message can be overwritten. >>> torch.testing.assert_close(actual, expected, msg="Argh, the tensors are not close!") AssertionError: Argh, the tensors are not close! >>> # The error message can also created at runtime by passing a callable. >>> def custom_msg(actual, expected, diagnostic_info): ... return ( ... f"Argh, we found {diagnostic_info.total_mismatches} mismatches! " ... f"That is {diagnostic_info.mismatch_ratio:.1%}!" ... ) >>> torch.testing.assert_close(actual, expected, msg=custom_msg) AssertionError: Argh, we found 2 mismatches! That is 66.7%! """ # Hide this function from `pytest`'s traceback __tracebackhide__ = True error_meta, pair = _parse_inputs(actual, expected) if error_meta: raise error_meta.to_error() else: pair = cast(Union[_TensorPair, List, Dict], pair) check_tensors = functools.partial( _check_tensors_close, rtol=rtol, atol=atol, equal_nan=equal_nan, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride, msg=msg, ) error_meta = _check_pair(pair, check_tensors) if error_meta: raise error_meta.to_error()