r"""Importing this file includes common utility methods and base clases for checking quantization api and properties of resulting modules. """ import torch import torch.nn as nn import torch.nn.quantized as nnq import torch.nn.quantized.dynamic as nnqd from torch.nn.intrinsic import _FusedModule import torch.distributed as dist from torch.testing._internal.common_utils import TestCase from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \ default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \ propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_weight_only_qconfig, \ get_default_qat_qconfig, PerChannelMinMaxObserver, default_dynamic_quant_observer, QConfigDynamic, QuantType from torch.quantization.quantization_mappings import ( get_default_dynamic_quant_module_mappings, get_default_qconfig_propagation_list, get_default_qat_module_mappings, ) try: # graph mode quantization based on fx from torch.quantization.quantize_fx import ( prepare_fx, prepare_qat_fx, convert_fx, ) HAS_FX = True except ImportError: HAS_FX = False import copy import io import functools import time import os import unittest import numpy as np from torch.testing import FileCheck class NodeSpec: ''' Used for checking GraphModule Node ''' def __init__(self, op, target): ''' op: call_function | call_module target: for call_function, target would be a function for call_module, target would be the type of PyTorch module ''' self.op = op self.target = target @classmethod def call_function(cls, target): return NodeSpec('call_function', target) @classmethod def call_method(cls, target): return NodeSpec('call_method', target) @classmethod def call_module(cls, target): return NodeSpec('call_module', target) def __hash__(self): return hash((self.op, self.target)) def __eq__(self, other): if not isinstance(other, NodeSpec): return NotImplemented return self.op == other.op and self.target == other.target def __repr__(self): return repr(self.op) + " " + repr(self.target) def test_only_eval_fn(model, calib_data): r""" Default evaluation function takes a torch.utils.data.Dataset or a list of input Tensors and run the model on the dataset """ for inp in calib_data: output = model(*inp) _default_loss_fn = torch.nn.CrossEntropyLoss() def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn): r""" Default train function takes a torch.utils.data.Dataset and train the model on the dataset """ optimizer = torch.optim.Adam(model.parameters(), lr=0.001) train_loss, correct, total = 0, 0, 0 for i in range(10): model.train() for data, target in train_data: optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(output, 1) total += target.size(0) correct += (predicted == target).sum().item() return train_loss, correct, total class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches): model.train() cnt = 0 for image, target in data_loader: start_time = time.time() print('.', end='') cnt += 1 image, target = image.to(device), target.to(device) output = model(image) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() acc1, acc5 = accuracy(output, target, topk=(1, 5)) if cnt >= ntrain_batches: return return def ddp_setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) def ddp_cleanup(): dist.destroy_process_group() def run_ddp(rank, world_size, prepared): ddp_setup(rank, world_size) prepared.cuda() prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank]) prepared.to(rank) model_with_ddp = prepared optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001) train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1) ddp_cleanup() def convert_dynamic(module): convert(module, get_default_dynamic_quant_module_mappings(), inplace=True) def prepare_dynamic(model, qconfig_dict=None): propagate_qconfig_(model, qconfig_dict) def _make_conv_test_input( batch_size, in_channels_per_group, input_feature_map_size, out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale, W_zero_point, use_bias, use_channelwise, ): in_channels = in_channels_per_group * groups out_channels = out_channels_per_group * groups (X_value_min, X_value_max) = (0, 4) X_init = torch.randint( X_value_min, X_value_max, (batch_size, in_channels,) + input_feature_map_size) X = X_scale * (X_init - X_zero_point).float() X_q = torch.quantize_per_tensor( X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8) W_scale = W_scale * out_channels W_zero_point = W_zero_point * out_channels # Resize W_scale and W_zero_points arrays equal to out_channels W_scale = W_scale[:out_channels] W_zero_point = W_zero_point[:out_channels] # For testing, we use small values for weights and for activations so that # no overflow occurs in vpmaddubsw instruction. If the overflow occurs in # qconv implementation and if there is no overflow. # In reference we can't exactly match the results with reference. # Please see the comment in qconv implementation file # aten/src/ATen/native/quantized/cpu/qconv.cpp for more details. (W_value_min, W_value_max) = (-5, 5) # The operator expects them in the format # (out_channels, in_channels/groups,) + kernel_size W_init = torch.randint( W_value_min, W_value_max, (out_channels, in_channels_per_group,) + kernel_size) b_init = torch.randint(0, 10, (out_channels,)) if use_channelwise: W_shape = (-1, 1) + (1,) * len(kernel_size) W_scales_tensor = torch.tensor(W_scale, dtype=torch.float) W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float) W = W_scales_tensor.reshape(*W_shape) * ( W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float() b = X_scale * W_scales_tensor * b_init.float() W_q = torch.quantize_per_channel( W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0, dtype=torch.qint8) else: W = W_scale[0] * (W_init - W_zero_point[0]).float() b = X_scale * W_scale[0] * b_init.float() W_q = torch.quantize_per_tensor( W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8) return (X, X_q, W, W_q, b if use_bias else None) def skipIfNoFBGEMM(fn): reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.' if isinstance(fn, type): if 'fbgemm' not in torch.backends.quantized.supported_engines: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = reason return fn @functools.wraps(fn) def wrapper(*args, **kwargs): if 'fbgemm' not in torch.backends.quantized.supported_engines: raise unittest.SkipTest(reason) else: fn(*args, **kwargs) return wrapper try: import torchvision # noqa: F401 HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") def get_script_module(model, tracing, data): return torch.jit.trace(model, data) if tracing else torch.jit.script(model) def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True): """ Convert lengths to offsets for embedding_bag """ tt = np.zeros((t.shape[0] + 1,), dtype=offset_type) tt[1:] = t tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type)) if use_begin_offset: return tt[:-1] return tt[1:] # QuantizationTestCase used as a base class for testing quantization on modules class QuantizationTestCase(TestCase): def setUp(self): super().setUp() self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)] self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)] self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)] for _ in range(2)] self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)] for _ in range(2)] self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)] for _ in range(2)] self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float), torch.randint(0, 1, (1,), dtype=torch.long)] for _ in range(2)] self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float), torch.randint(0, 1, (1,), dtype=torch.long)] for _ in range(2)] self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float), torch.randint(0, 1, (1,), dtype=torch.long)] for _ in range(2)] self.img_data_dict = {1 : self.img_data_1d, 2 : self.img_data_2d, 3 : self.img_data_3d} # Quant types that produce statically quantized ops self.static_quant_types = [QuantType.STATIC, QuantType.QAT] # All quant types for (fx based) graph mode quantization self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT] def checkNoPrepModules(self, module): r"""Checks the module does not contain child modules for quantization prepration, e.g. quant, dequant and observer """ self.assertFalse(hasattr(module, 'quant')) self.assertFalse(hasattr(module, 'dequant')) def checkNoQconfig(self, module): r"""Checks the module does not contain qconfig """ self.assertFalse(hasattr(module, 'qconfig')) for child in module.children(): self.checkNoQconfig(child) def checkHasPrepModules(self, module): r"""Checks the module contains child modules for quantization prepration, e.g. quant, dequant and observer """ self.assertTrue(hasattr(module, 'module')) self.assertTrue(hasattr(module, 'quant')) self.assertTrue(hasattr(module, 'dequant')) def checkObservers(self, module, propagate_qconfig_list=None, prepare_custom_config_dict=None): r"""Checks the module or module's leaf descendants have observers in preperation for quantization """ if propagate_qconfig_list is None: propagate_qconfig_list = get_default_qconfig_propagation_list() if prepare_custom_config_dict is None: prepare_custom_config_dict = {} float_to_observed_module_class_mapping = prepare_custom_config_dict.get("float_to_observed_custom_module_class", {}) # check if a module is a leaf module, ignoring activation_post_process attribute def is_leaf_module(module): submodule_name_count = 0 for name, _ in module.named_children(): if name != 'activation_post_process': submodule_name_count += 1 return submodule_name_count == 0 if hasattr(module, 'qconfig') and module.qconfig is not None and \ ((is_leaf_module(module) and not isinstance(module, torch.nn.Sequential) and type(module) in propagate_qconfig_list) or type(module) in float_to_observed_module_class_mapping.keys()): self.assertTrue(hasattr(module, 'activation_post_process'), 'module: ' + str(type(module)) + ' do not have observer') # we don't need to check observers for child modules of the # qat modules if type(module) not in get_default_qat_module_mappings().values() and \ type(module) not in float_to_observed_module_class_mapping.values() and \ not isinstance(module, _FusedModule): for child in module.children(): self.checkObservers(child, propagate_qconfig_list, prepare_custom_config_dict) def checkQuantDequant(self, mod): r"""Checks that mod has nn.Quantize and nn.DeQuantize submodules inserted """ self.assertEqual(type(mod.quant), nnq.Quantize) self.assertEqual(type(mod.dequant), nnq.DeQuantize) def checkWrappedQuantizedLinear(self, mod): r"""Checks that mod has been swapped for an nnq.Linear module, the bias is qint32, and that the module has Quantize and DeQuantize submodules """ self.assertEqual(type(mod.module), nnq.Linear) self.checkQuantDequant(mod) def checkQuantizedLinear(self, mod): self.assertEqual(type(mod), nnq.Linear) def checkDynamicQuantizedLinear(self, mod, dtype): r"""Checks that mod has been swapped for an nnqd.Linear module, the bias is float. """ self.assertEqual(type(mod), nnqd.Linear) self.assertEqual(mod._packed_params.dtype, dtype) def check_eager_serialization(self, ref_model, loaded_model, x): # Check state dict serialization and torch.save APIs model_dict = ref_model.state_dict() b = io.BytesIO() torch.save(model_dict, b) b.seek(0) loaded_dict = torch.load(b) loaded_model.load_state_dict(loaded_dict) ref_out = ref_model(*x) load_out = loaded_model(*x) def check_outputs(ref_out, load_out): self.assertEqual(ref_out[0], load_out[0]) if isinstance(ref_out[1], tuple): self.assertEqual(ref_out[1][0], load_out[1][0]) self.assertEqual(ref_out[1][1], load_out[1][1]) else: self.assertEqual(ref_out[1], load_out[1]) check_outputs(ref_out, load_out) b = io.BytesIO() torch.save(ref_model, b) b.seek(0) loaded = torch.load(b) load_out = loaded(*x) check_outputs(ref_out, load_out) def check_weight_bias_api(self, ref_model, weight_keys, bias_keys): weight = ref_model.get_weight() bias = ref_model.get_bias() self.assertEqual(weight_keys ^ weight.keys(), set()) self.assertEqual(bias_keys ^ bias.keys(), set()) def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype): r"""Checks that mod has been swapped for an nnqd.LSTM type module, the bias is float. """ wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'} self.assertEqual(type(mod), reference_module_type) for packed_params in mod._all_weight_values: self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype]) def checkLinear(self, mod): self.assertEqual(type(mod), torch.nn.Linear) def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype): r"""Checks that mod has been swapped for an nnqd.Linear module, the bias is float. """ wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'} self.assertEqual(type(mod), reference_module_type) if hasattr(mod, '_all_weight_values'): for packed_params in mod._all_weight_values: self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype]) def checkScriptable(self, orig_mod, calib_data, check_save_load=False): scripted = torch.jit.script(orig_mod) self._checkScriptable(orig_mod, scripted, calib_data, check_save_load) # Use first calib_data entry as trace input traced = torch.jit.trace(orig_mod, calib_data[0]) self._checkScriptable(orig_mod, traced, calib_data, check_save_load) # Call this twice: once for a scripted module and once for a traced module def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load): self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data) # Test save/load buffer = io.BytesIO() torch.jit.save(script_mod, buffer) buffer.seek(0) loaded_mod = torch.jit.load(buffer) # Pending __get_state_ and __set_state__ support # See tracking task https://github.com/pytorch/pytorch/issues/23984 if check_save_load: self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data) def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data): for inp in calib_data: ref_output = orig_mod(*inp) scripted_output = test_mod(*inp) self.assertEqual(scripted_output, ref_output) def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False, check=True, eval_mode=True, dynamic=False, qconfig=None): if debug: print('Testing:', str(module)) qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)} if eval_mode: module = module.eval() if dynamic: qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig} model = get_script_module(module, tracing, inputs[0]).eval() if debug: print('input graph:', model.graph) models = {} outputs = {} for d in [True, False]: if dynamic: models[d] = quantize_dynamic_jit(model, qconfig_dict, debug=d) # make sure it runs outputs[d] = models[d](inputs) else: # module under test can contain in-place ops, and we depend on # input data staying constant for comparisons inputs_copy = copy.deepcopy(inputs) models[d] = quantize_jit( model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False, debug=d) # make sure it runs outputs[d] = models[d](*inputs[0]) if debug: print('debug graph:', models[True].graph) print('non debug graph:', models[False].graph) if check: # debug and non-debug option should have the same numerics self.assertEqual(outputs[True], outputs[False]) # non debug graph should produce quantized op FileCheck().check(quantized_op) \ .run(models[False].graph) return models[False] def checkGraphModuleNodes( self, graph_module, expected_node=None, expected_node_occurrence=None, expected_node_list=None): """ Check if GraphModule contains the target node Args: graph_module: the GraphModule instance we want to check expected_node, expected_node_occurrence, expected_node_list: see docs for checkGraphModeFxOp """ nodes_in_graph = dict() node_list = [] modules = dict(graph_module.named_modules()) for node in graph_module.graph.nodes: n = None if node.op == 'call_function' or node.op == 'call_method': n = NodeSpec(node.op, node.target) elif node.op == 'call_module': n = NodeSpec(node.op, type(modules[node.target])) if n is not None: node_list.append(n) if n in nodes_in_graph: nodes_in_graph[n] += 1 else: nodes_in_graph[n] = 1 if expected_node is not None: self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) + ' not found in the graph module') if expected_node_occurrence is not None: for expected_node, occurrence in expected_node_occurrence.items(): if occurrence != 0: self.assertTrue( expected_node in nodes_in_graph, 'Check failed for node:' + str(expected_node) + ' not found') self.assertTrue( nodes_in_graph[expected_node] == occurrence, 'Check failed for node:' + str(expected_node) + ' Expected occurrence:' + str(occurrence) + ' Found occurrence:' + str(nodes_in_graph[expected_node])) else: self.assertTrue( expected_node not in nodes_in_graph, 'Check failed for node:' + str(expected_node) + ' expected no occurrence but found') if expected_node_list is not None: cur_index = 0 for n in node_list: if cur_index == len(expected_node_list): return if n == expected_node_list[cur_index]: cur_index += 1 self.assertTrue( cur_index == len(expected_node_list), "Check failed for graph:" + self.printGraphModule(graph_module, print_str=False) + "Expected ordered list:" + str(expected_node_list)) def printGraphModule(self, graph_module, print_str=True): modules = dict(graph_module.named_modules()) node_infos = [] for n in graph_module.graph.nodes: node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs])) if n.op == 'call_module': node_info += ' module type: ' + repr(type(modules[n.target])) node_infos.append(node_info) str_to_print = '\n'.join(node_infos) if print_str: print(str_to_print) return str_to_print if HAS_FX: def checkGraphModeFxOp(self, model, inputs, quant_type, expected_node=None, expected_node_occurrence=None, expected_node_list=None, debug=False, print_debug_info=False, custom_qconfig=None): """ Quantizes model with graph mode quantization on fx and check if the quantized model contains the quantized_node Args: model: floating point torch.nn.Module inputs: one positional sample input arguments for model expected_node: NodeSpec e.g. NodeSpec.call_function(torch.quantize_per_tensor) expected_node_occurrence: a dict from NodeSpec to expected number of occurences (int) e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1, NodeSpec.call_method('dequantize'): 1} expected_node_list: a list of NodeSpec, used to check the order of the occurrence of Node e.g. [NodeSpec.call_function(torch.quantize_per_tensor), NodeSpec.call_module(nnq.Conv2d), NodeSpec.call_function(F.hardtanh_), NodeSpec.call_method('dequantize')] """ # TODO: make img_data a single example instead of a list if type(inputs) == list: inputs = inputs[0] if quant_type == QuantType.QAT: qconfig = get_default_qat_qconfig(torch.backends.quantized.engine) model.train() elif quant_type == QuantType.STATIC: qconfig = get_default_qconfig(torch.backends.quantized.engine) model.eval() else: qconfig = default_dynamic_qconfig model.eval() # overwrite qconfig with custom_qconfig if custom_qconfig is not None: qconfig = custom_qconfig if quant_type == QuantType.QAT: prepare = prepare_qat_fx else: prepare = prepare_fx qconfig_dict = {'': qconfig} prepared = prepare(model, qconfig_dict) if not quant_type == QuantType.DYNAMIC: prepared(*inputs) prepared_copy = copy.deepcopy(prepared) qgraph = convert_fx(prepared) qgraph_debug = convert_fx(prepared_copy, debug=True) result = qgraph(*inputs) result_debug = qgraph_debug(*inputs) qgraph_to_check = qgraph_debug if debug else qgraph if print_debug_info: print() print('quant type:', quant_type) print('original model:', model) print() print('quantized model:', qgraph_to_check) self.printGraphModule(qgraph_to_check) print() self.checkGraphModuleNodes( qgraph_to_check, expected_node, expected_node_occurrence, expected_node_list) return result def checkEmbeddingSerialization(self, qemb, num_embeddings, embedding_dim, indices, offsets, set_qconfig, is_emb_bag, dtype=torch.quint8): # Test serialization of dynamic EmbeddingBag module using state_dict if is_emb_bag: inputs = [indices, offsets] else: inputs = [indices] emb_dict = qemb.state_dict() b = io.BytesIO() torch.save(emb_dict, b) b.seek(0) loaded_dict = torch.load(b) embedding_unpack = torch.ops.quantized.embedding_bag_unpack # Check unpacked weight values explicitly for key in emb_dict: if isinstance(emb_dict[key], torch._C.ScriptObject): assert isinstance(loaded_dict[key], torch._C.ScriptObject) emb_weight = embedding_unpack(emb_dict[key]) loaded_weight = embedding_unpack(loaded_dict[key]) self.assertEqual(emb_weight, loaded_weight) # Check state dict serialization and torch.save APIs if is_emb_bag: loaded_qemb = nnq.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim, include_last_offset=True, mode='sum', dtype=dtype) else: loaded_qemb = nnq.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim, dtype=dtype) self.check_eager_serialization(qemb, loaded_qemb, inputs) loaded_qemb.load_state_dict(loaded_dict) self.assertEqual(embedding_unpack(qemb._packed_params._packed_weight), embedding_unpack(loaded_qemb._packed_params._packed_weight)) # Test JIT serialization self.checkScriptable(qemb, [inputs], check_save_load=True) # Test from_float call if is_emb_bag: float_embedding = torch.nn.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim, include_last_offset=True, scale_grad_by_freq=False, mode='sum') else: float_embedding = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) if set_qconfig: float_qparams_observer = PerChannelMinMaxObserver.with_args(dtype=dtype, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0) float_embedding.qconfig = QConfigDynamic(activation=default_dynamic_quant_observer, weight=float_qparams_observer) prepare_dynamic(float_embedding) float_embedding(*inputs) if is_emb_bag: q_embeddingbag = nnq.EmbeddingBag.from_float(float_embedding) expected_name = "QuantizedEmbeddingBag" else: q_embeddingbag = nnq.Embedding.from_float(float_embedding) expected_name = "QuantizedEmbedding" q_embeddingbag(*inputs) self.assertTrue(expected_name in str(q_embeddingbag)) # Below are a series of neural net models to use in testing quantization # Single layer models class SingleLayerLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) return x class AnnotatedSingleLayerLinearModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) def forward(self, x): x = self.fc1(x) return x class SingleLayerLinearDynamicModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) return x class RNNDynamicModel(torch.nn.Module): def __init__(self, mod_type): super().__init__() self.qconfig = default_dynamic_qconfig if mod_type == 'GRU': self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float) if mod_type == 'LSTM': self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float) def forward(self, x): x = self.mod(x) return x class RNNCellDynamicModel(torch.nn.Module): def __init__(self, mod_type): super().__init__() self.qconfig = default_dynamic_qconfig if mod_type == 'GRUCell': self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float) if mod_type == 'LSTMCell': self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float) if mod_type == 'RNNReLU': self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float) if mod_type == 'RNNTanh': self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float) def forward(self, x): x = self.mod(x) return x class LSTMwithHiddenDynamicModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float) def forward(self, x, hid): x, hid = self.lstm(x, hid) return x, hid class ConvModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) def forward(self, x): x = self.conv(x) return x class ConvTransposeModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float) def forward(self, x): x = self.conv(x) return x class AnnotatedConvModel(torch.nn.Module): def __init__(self, qengine): super().__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.dequant(x) return x class AnnotatedConvTransposeModel(torch.nn.Module): def __init__(self, qengine): super().__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.dequant(x) return x class ConvBnModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) def forward(self, x): x = self.conv(x) x = self.bn(x) return x class AnnotatedConvBnModel(torch.nn.Module): def __init__(self): super().__init__() self.qconfig = default_qconfig self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.bn(x) x = self.dequant(x) return x class AnnotatedConvBnReLUModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super(AnnotatedConvBnReLUModel, self).__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) self.relu = nn.ReLU(inplace=True) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dequant(x) return x def fuse_model(self): torch.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True) class TwoLayerLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x class LinearModelWithSubmodule(nn.Module): def __init__(self): super(LinearModelWithSubmodule, self).__init__() self.subm = TwoLayerLinearModel() self.fc = nn.Linear(5, 5) def forward(self, x): x = self.subm(x) x = self.fc(x) return x class AnnotatedTwoLayerLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float)) self.fc2.qconfig = torch.quantization.get_default_qconfig("fbgemm") def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x class ActivationsTestModel(torch.nn.Module): def __init__(self): super().__init__() self.qconfig = torch.quantization.get_default_qconfig("fbgemm") self.quant = torch.quantization.QuantStub() self.hardswish = torch.nn.Hardswish().to(dtype=torch.float) self.elu = torch.nn.ELU().to(dtype=torch.float) self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.hardswish(x) x = self.elu(x) x = self.dequant(x) return x class LinearReluModel(torch.nn.Module): def __init__(self): super().__init__() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() def forward(self, x): x = self.relu(self.fc(x)) return x class NormalizationTestModel(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.quantization.QuantStub() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.layer_norm = torch.nn.LayerNorm((8)) self.group_norm = torch.nn.GroupNorm(2, 8) self.instance_norm1d = torch.nn.InstanceNorm1d(8) self.instance_norm2d = torch.nn.InstanceNorm2d(8) self.instance_norm3d = torch.nn.InstanceNorm3d(8) def forward(self, x): x = self.quant(x) x = self.fc1(x) x = self.layer_norm(x) x = self.group_norm(x.unsqueeze(-1)) x = self.instance_norm1d(x) x = self.instance_norm2d(x.unsqueeze(-1)) x = self.instance_norm3d(x.unsqueeze(-1)) return x class NestedModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class AnnotatedNestedModel(torch.nn.Module): def __init__(self, qengine): super().__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) self.fc3.qconfig = default_qconfig self.sub2.fc1 = QuantWrapper(self.sub2.fc1) if qengine == 'fbgemm': self.sub2.fc1.qconfig = default_per_channel_qconfig else: self.sub2.fc1.qconfig = default_qconfig def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class AnnotatedSubNestedModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = QuantWrapper(TwoLayerLinearModel()) self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) self.fc3.qconfig = default_qconfig self.sub2.qconfig = default_qconfig def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class AnnotatedCustomConfigNestedModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) self.fc3.qconfig = default_qconfig self.sub2.qconfig = default_qconfig custom_options = { 'dtype': torch.quint8, 'qscheme': torch.per_tensor_affine } custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options), weight=default_weight_observer) self.sub2.fc1.qconfig = custom_qconfig self.sub2.fc1 = QuantWrapper(self.sub2.fc1) self.sub2.fc2 = QuantWrapper(self.sub2.fc2) def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class QuantSubModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = QuantWrapper(TwoLayerLinearModel()) self.sub2.qconfig = default_qconfig self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float) self.fc3.qconfig = default_qconfig def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class InnerModule(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.relu1 = torch.nn.ReLU() self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) self.relu2 = torch.nn.ReLU() def forward(self, x): return self.relu2(self.fc2(self.relu1(self.fc1(x)))) def fuse_modules(self): fusable_layers = [] named_children = list(self.named_children()) for idx, (current_name, layer) in enumerate(named_children): if isinstance(layer, torch.nn.Linear): if idx >= len(named_children) - 1: break if isinstance(named_children[idx + 1][1], torch.nn.ReLU): fusable_layers.append([current_name, named_children[idx + 1][0]]) torch.quantization.fuse_modules(self, fusable_layers, inplace=True) class SkipQuantModel(torch.nn.Module): r"""We can skip quantization by explicitly setting qconfig of a submodule to None """ def __init__(self): super().__init__() self.sub = InnerModule() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): return self.fc(self.sub(x)) def fuse_modules(self): self.sub.fuse_modules() class AnnotatedSkipQuantModel(torch.nn.Module): r"""We can skip quantization by explicitly setting qconfig of a submodule to None """ def __init__(self, qengine): super().__init__() self.qconfig = torch.quantization.get_default_qconfig(qengine) self.sub = QuantWrapper(InnerModule()) self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) # don't quantize this fc self.fc.qconfig = None def forward(self, x): return self.fc(self.sub(x)) def fuse_modules(self): self.sub.module.fuse_modules() class QuantStubModel(torch.nn.Module): r"""A Module with manually inserted `QuantStub` and `DeQuantStub` """ def __init__(self): super().__init__() self.qconfig = torch.quantization.get_default_qconfig("qnnpack") self.quant = QuantStub() self.dequant = DeQuantStub() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.fc(x) return self.dequant(x) class ManualLinearQATModel(torch.nn.Module): r"""A Module with manually inserted `QuantStub` and `DeQuantStub` """ def __init__(self, qengine): super().__init__() self.qconfig = torch.quantization.get_default_qat_qconfig(qengine) self.quant = QuantStub() self.dequant = DeQuantStub() self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float) self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.fc1(x) x = self.fc2(x) return self.dequant(x) class ManualConvLinearQATModel(torch.nn.Module): r"""A module with manually inserted `QuantStub` and `DeQuantStub` and contains both linear and conv modules """ def __init__(self): super().__init__() self.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack") self.quant = QuantStub() self.dequant = DeQuantStub() self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float) self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float) self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.conv(x) x = x.view(-1, 64).contiguous() x = self.fc1(x) x = self.fc2(x) return self.dequant(x) class SubModelForFusion(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float) self.bn = nn.BatchNorm2d(2).to(dtype=torch.float) def forward(self, x): x = self.conv(x) x = self.bn(x) return x class SubModelWithoutFusion(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float) self.relu = nn.ReLU(inplace=False).to(dtype=torch.float) def forward(self, x): return self.relu(self.conv(x)) class ModelForFusion(nn.Module): def __init__(self, qconfig): super().__init__() self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float) self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float) self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float) self.sub1 = SubModelForFusion() self.sub2 = SubModelWithoutFusion() self.fc = nn.Linear(36, 10).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() self.qconfig = qconfig self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float) self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float) self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float) self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float) self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float) self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float) self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float) # don't quantize sub2 self.sub2.qconfig = None self.fc.qconfig = None def forward(self, x): x = x.squeeze(2) x = self.quant(x) x = self.conv3(x) x = self.bn3(x) x = self.relu4(x) x = x.unsqueeze(2) y = x.unsqueeze(2) x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.sub1(x) x = self.dequant(x) x = self.sub2(x) x = x.view(-1, 36).contiguous() x = self.fc(x) y = self.conv2(y) y = self.relu2(y) y = self.bn2(y) y = self.relu3(y) y = self.dequant(y) return x class ConvBNReLU(nn.Sequential): def __init__(self): super().__init__( nn.Conv2d(3, 3, 1, 1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=False) ) class ModelWithSequentialFusion(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 3, 1) self.relu1 = nn.ReLU(inplace=False) layers = [] for i in range(3): layers.append(ConvBNReLU()) self.features = nn.Sequential(*layers) head = [nn.Linear(300, 10), nn.ReLU(inplace=False)] self.classifier = nn.Sequential(*head) self.seq = nn.Sequential() self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv1(x) x = self.relu1(x) x = self.features(x) x = torch.reshape(x, (-1, 3 * 10 * 10)) x = self.classifier(x) x = self.seq(x) x = self.dequant(x) return x class ModelForFusionWithBias(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float) self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float) self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float) self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float) self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.dequant(x) return x class DummyObserver(torch.nn.Module): def calculate_qparams(self): return 1.0, 0 def forward(self, x): return x class ModelWithFunctionals(torch.nn.Module): def __init__(self): super().__init__() self.mycat = nnq.FloatFunctional() self.myadd = nnq.FloatFunctional() self.myadd_relu = nnq.FloatFunctional() # Tracing doesnt work yet for c10 ops with scalar inputs # https://github.com/pytorch/pytorch/issues/27097 # self.my_scalar_add = nnq.FloatFunctional() # self.my_scalar_mul = nnq.FloatFunctional() def forward(self, x): y = self.mycat.cat([x, x, x]) z = self.myadd.add(y, y) w = self.myadd_relu.add_relu(z, z) # Tracing doesnt work yet for c10 ops with scalar inputs # https://github.com/pytorch/pytorch/issues/27097 # w = self.my_scalar_add.add_scalar(w, -0.5) # w = self.my_scalar_mul.mul_scalar(w, 0.5) return w class ResNetBase(torch.nn.Module): def __init__(self): super().__init__() norm_layer = nn.BatchNorm2d inplanes = 3 self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.bn1 = norm_layer(inplanes) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.downsample = torch.nn.Identity() self.myop = nn.quantized.FloatFunctional() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) identity = self.downsample(x) out = self.myop.add(out, identity) out = self.relu2(out) out = self.avgpool(out) return out class ModelMultipleOps(torch.nn.Module): def __init__(self): super().__init__() norm_layer = nn.BatchNorm2d inplanes = 3 self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.bn1 = norm_layer(inplanes) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.downsample = torch.nn.Identity() self.skip_add = nn.quantized.FloatFunctional() self.cat = nn.quantized.FloatFunctional() self.avgpool = nn.AdaptiveAvgPool2d((4, 4)) self.fc = nn.Linear(12, 6) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) identity = self.downsample(x) out = self.skip_add.add(out, identity) out = self.relu2(out) out = self.avgpool(out) out = self.conv2(out) out = torch.nn.functional.max_pool2d(out, 2, 2) out = self.cat.cat([out, out]) out = out.reshape(-1, 3 * 2 * 2) out = self.fc(out) return out # Model to ensure consistency of fake quant with true quant # Average pooling and mean operations are not modelled # accurately with fake-quant so this model does not # contain those operations class ModelMultipleOpsNoAvgPool(torch.nn.Module): def __init__(self): super().__init__() norm_layer = nn.BatchNorm2d inplanes = 3 self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.bn1 = norm_layer(inplanes) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.skip_add = nn.quantized.FloatFunctional() self.cat = nn.quantized.FloatFunctional() self.maxpool = nn.MaxPool2d((4, 4)) self.fc = nn.Linear(12, 6) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) skip = self.conv2(x) out = self.skip_add.add(out, skip) out = self.relu2(out) out = self.maxpool(out) out = self.conv2(out) out = torch.nn.functional.max_pool2d(out, 2, 2) out = self.cat.cat([out, out]) out = out.reshape(-1, 3 * 2 * 2) out = self.fc(out) return out class EmbeddingBagModule(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12, include_last_offset=True, scale_grad_by_freq=False, mode='sum') def forward(self, indices, offsets, per_sample_weights): return self.emb(indices, offsets, per_sample_weights) class EmbeddingModule(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12) def forward(self, indices): return self.emb(indices) class EmbeddingWithLinear(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12) self.fc = torch.nn.Linear(5, 5) self.emb.qconfig = float_qparams_weight_only_qconfig self.qconfig = default_qconfig def forward(self, indices, linear_in): return self.emb(indices), self.fc(linear_in)