## @package random_neg_rank_loss # Module caffe2.python.layers.random_neg_rank_loss from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import schema, core from caffe2.python.layers.layers import ( ModelLayer, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np class MarginRankLoss(ModelLayer): def __init__(self, model, input_record, name='margin_rank_loss', margin=0.1, average_loss=False, **kwargs): super(MarginRankLoss, self).__init__(model, name, input_record, **kwargs) assert margin >= 0, ('For hinge loss, margin should be no less than 0') self._margin = margin self._average_loss = average_loss assert schema.is_schema_subset( schema.Struct( ('pos_prediction', schema.Scalar()), ('neg_prediction', schema.List(np.float32)), ), input_record ) self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('output')) def add_ops(self, net): neg_score = self.input_record.neg_prediction['values']() pos_score = net.LengthsTile( [ self.input_record.pos_prediction(), self.input_record.neg_prediction['lengths']() ], net.NextScopedBlob('pos_score_repeated') ) const_1 = net.ConstantFill( neg_score, net.NextScopedBlob('const_1'), value=1, dtype=core.DataType.INT32 ) rank_loss = net.MarginRankingCriterion( [pos_score, neg_score, const_1], net.NextScopedBlob('rank_loss'), margin=self._margin, ) if self._average_loss: net.AveragedLoss(rank_loss, self.output_schema.field_blobs()) else: net.ReduceFrontSum(rank_loss, self.output_schema.field_blobs())