from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest from caffe2.python import brew, core, workspace import caffe2.python.hypothesis_test_util as hu from caffe2.python.model_helper import ModelHelper import caffe2.python.ideep_test_util as mu @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") class TestSpatialBN(hu.HypothesisTestCase): @given(size=st.integers(7, 10), input_channels=st.integers(7, 10), batch_size=st.integers(1, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), inplace=st.sampled_from([True, False]), **mu.gcs) def test_spatialbn_test_mode( self, size, input_channels, batch_size, seed, order, epsilon, inplace, gc, dc): op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["X" if inplace else "Y"], order=order, is_test=True, epsilon=epsilon ) def reference_spatialbn_test(X, scale, bias, mean, var): if order == "NCHW": scale = scale[np.newaxis, :, np.newaxis, np.newaxis] bias = bias[np.newaxis, :, np.newaxis, np.newaxis] mean = mean[np.newaxis, :, np.newaxis, np.newaxis] var = var[np.newaxis, :, np.newaxis, np.newaxis] return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,) np.random.seed(1701) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2).swapaxes(2, 3) self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0]) @given(size=st.integers(7, 10), input_channels=st.integers(7, 10), batch_size=st.integers(1, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW"]), epsilon=st.floats(1e-5, 1e-2), inplace=st.sampled_from([True, False]), **mu.gcs) def test_spatialbn_train_mode( self, size, input_channels, batch_size, seed, order, epsilon, inplace, gc, dc): print("dc0: {}, dc1: {}".format(dc[0], dc[1])) op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "running_mean", "running_var"], ["X" if inplace else "Y", "running_mean", "running_var", "saved_mean", "saved_var"], order=order, is_test=False, epsilon=epsilon, ) np.random.seed(1701) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 running_mean = np.random.randn(input_channels).astype(np.float32) running_var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2).swapaxes(2, 3) # TODO: It looks like IDEEP spatial_bn op outputs save_var (output[4]) # as the reciprocal of CPU op's output. Need to check back and add # output[4] for comparison self.assertDeviceChecks(dc, op, [X, scale, bias, running_mean, running_var], [0, 1, 2, 3]) @given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(1, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), **mu.gcs) def test_spatialbn_train_mode_gradient_check( self, size, input_channels, batch_size, seed, order, epsilon, gc, dc): op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["Y", "mean", "var", "saved_mean", "saved_var"], order=order, is_test=False, epsilon=epsilon, ) np.random.seed(seed) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2).swapaxes(2, 3) for input_to_check in [0, 1, 2]: # dX, dScale, dBias self.assertGradientChecks(gc, op, [X, scale, bias, mean, var], input_to_check, [0]) if __name__ == "__main__": unittest.main()