from typing import Dict, Set, Optional, Tuple, List import yaml from dataclasses import dataclass from tools.codegen.model import NativeFunction from tools.codegen.selective_build.operator import * # A SelectiveBuilder holds information extracted from the selective build # YAML specification. # # It includes information about the build's selectivity, the debug_info # associated with this selective build (opaque string), and the set of # operators that should be included in the build. # @dataclass(frozen=True) class SelectiveBuilder: # If true, then the build is not selective, and includes all # operators. include_all_operators: bool # Debug Information at the selective/custom build level. _debug_info: Optional[Tuple[str, ...]] # A dictionary of operator -> operator metadata. operators: Dict[str, SelectiveBuildOperator] # A dictionary of selected kernel tags and dtypes. Typically a # PyTorch Operator Kernel (function) may have many code paths # that are specialized for many many Tensor dtypes, so it's not # one per kernel function, but there could be many per kernel # function. The tag isn't a kernel function name, but some fragment # of the kernel function implementation itself. kernel_metadata: Dict[str, List[str]] # If true, then fragments for all dtypes for all kernel functions # are included. This is typically set when any one of the # operator lists is generated from a mechanism other than # tracing based selective build. include_all_kernel_dtypes: bool @staticmethod def get_nop_selector() -> 'SelectiveBuilder': return SelectiveBuilder.from_yaml_dict({'include_all_operators': True}) @staticmethod def from_yaml_dict(data: Dict[str, object]) -> 'SelectiveBuilder': valid_top_level_keys = { 'include_all_kernel_dtypes', 'include_all_operators', 'debug_info', 'operators', 'kernel_metadata', } top_level_keys = set(data.keys()) if len(top_level_keys - valid_top_level_keys) > 0: raise Exception("Got unexpected top level keys: {}".format( ",".join(top_level_keys - valid_top_level_keys), )) include_all_operators = data.get('include_all_operators', False) assert isinstance(include_all_operators, bool) debug_info = None if 'debug_info' in data: di_list = data['debug_info'] assert isinstance(di_list, list) debug_info = tuple(map(lambda x: str(x), di_list)) operators = {} operators_dict = data.get('operators', {}) assert isinstance(operators_dict, dict) for (k, v) in operators_dict.items(): operators[k] = SelectiveBuildOperator.from_yaml_dict(k, v) kernel_metadata = {} kernel_metadata_dict = data.get('kernel_metadata', {}) assert isinstance(kernel_metadata_dict, dict) for (k, v) in kernel_metadata_dict.items(): kernel_metadata[str(k)] = list(map(lambda dtype: str(dtype), v)) include_all_kernel_dtypes = data.get('include_all_kernel_dtypes', False) assert isinstance(include_all_kernel_dtypes, bool) return SelectiveBuilder( include_all_operators, debug_info, operators, kernel_metadata, include_all_kernel_dtypes, ) @staticmethod def from_yaml_str(config_contents: str) -> 'SelectiveBuilder': contents = yaml.safe_load(config_contents) return SelectiveBuilder.from_yaml_dict(contents) @staticmethod def from_yaml_path(config_path: str) -> 'SelectiveBuilder': with open(config_path, 'r') as f: contents = yaml.safe_load(f) return SelectiveBuilder.from_yaml_dict(contents) @staticmethod def from_legacy_op_registration_allow_list( allow_list: Set[str], is_root_operator: bool, is_used_for_training: bool) -> 'SelectiveBuilder': operators = {} for op in allow_list: operators[op] = { 'name': op, 'is_root_operator': is_root_operator, 'is_used_for_training': is_used_for_training, 'include_all_overloads': True, } return SelectiveBuilder.from_yaml_dict({ 'operators': operators, 'include_all_kernel_dtypes': True, }) def is_operator_selected(self, name: str) -> bool: if self.include_all_operators: return True if name in self.operators: return True name = strip_operator_overload_name(name) return name in self.operators and self.operators[name].include_all_overloads def is_native_function_selected(self, func: NativeFunction) -> bool: op_name = op_name_from_native_function(func) return self.is_operator_selected(op_name) def is_operator_selected_for_training(self, name: str) -> bool: if not self.is_operator_selected(name): return False if self.include_all_operators: return True not_training_op = SelectiveBuildOperator( name='', is_root_operator=False, is_used_for_training=False, include_all_overloads=False, _debug_info=None, ) op = not_training_op if name in self.operators: op = self.operators[name] name = strip_operator_overload_name(name) base_op = not_training_op if name in self.operators: base_op = self.operators[name] return ( op.is_used_for_training or (base_op.include_all_overloads and base_op.is_used_for_training) ) def is_native_function_selected_for_training(self, func: NativeFunction) -> bool: op_name = op_name_from_native_function(func) return self.is_operator_selected_for_training(op_name) def is_root_operator(self, name: str) -> bool: if not self.is_operator_selected(name): return False if self.include_all_operators: return True if name in self.operators: op: SelectiveBuildOperator = self.operators[name] return op.is_root_operator name = strip_operator_overload_name(name) if name not in self.operators: return False base_op: SelectiveBuildOperator = self.operators[name] return base_op.include_all_overloads and base_op.is_root_operator def is_kernel_dtype_selected(self, kernel_tag: str, dtype: str) -> bool: if self.include_all_operators or self.include_all_kernel_dtypes: return True return kernel_tag in self.kernel_metadata and dtype in self.kernel_metadata[kernel_tag] def to_dict(self) -> Dict[str, object]: ret: Dict[str, object] = { 'include_all_kernel_dtypes': self.include_all_kernel_dtypes, 'include_all_operators': self.include_all_operators, } operators = {} for (op_name, op) in self.operators.items(): operators[op_name] = op.to_dict() ret['operators'] = operators if self._debug_info is not None: ret['debug_info'] = self._debug_info ret['kernel_metadata'] = {k: list(v) for (k, v) in self.kernel_metadata.items()} return ret def merge_kernel_metadata( lhs: Dict[str, List[str]], rhs: Dict[str, List[str]], ) -> Dict[str, List[str]]: kernel_metadata: Dict[str, List[str]] = {} for (tag_name, dtypes) in list(lhs.items()) + list(rhs.items()): dtypes_copy = set(dtypes) if tag_name in kernel_metadata: dtypes_copy |= set(kernel_metadata[tag_name]) kernel_metadata[tag_name] = list(dtypes_copy) return kernel_metadata def combine_selective_builders(lhs: SelectiveBuilder, rhs: SelectiveBuilder) -> SelectiveBuilder: include_all_operators = lhs.include_all_operators or rhs.include_all_operators debug_info = merge_debug_info(lhs._debug_info, rhs._debug_info) operators = merge_operator_dicts(lhs.operators, rhs.operators) kernel_metadata = merge_kernel_metadata(lhs.kernel_metadata, rhs.kernel_metadata) include_all_kernel_dtypes = lhs.include_all_kernel_dtypes or rhs.include_all_kernel_dtypes return SelectiveBuilder( include_all_operators, debug_info, operators, kernel_metadata, include_all_kernel_dtypes, ) def op_name_from_native_function(f: NativeFunction) -> str: # This was originally read from the 'operator_name_with_overload' field in the # declaration dict, which was the part before the first '(' in 'schema_string'. return f'aten::{f.func.name}'