# @package constant_weight # Module caffe2.fb.python.layers.constant_weight from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer import numpy as np class ConstantWeight(ModelLayer): def __init__( self, model, input_record, weights=None, name='constant_weight', **kwargs ): super(ConstantWeight, self).__init__(model, name, input_record, **kwargs) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('constant_weight') ) self.data = self.input_record.field_blobs() self.num = len(self.data) weights = ( weights if weights is not None else [1. / self.num for _ in range(self.num)] ) assert len(weights) == self.num self.weights = [ self.model.add_global_constant( '%s_weight_%d' % (self.name, i), float(weights[i]) ) for i in range(self.num) ] def add_ops(self, net): net.WeightedSum( [b for x_w_pair in zip(self.data, self.weights) for b in x_w_pair], self.output_schema() )