import unittest import hypothesis.strategies as st from hypothesis import given import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import ( brew, core, model_helper, workspace, ) from caffe2.python.transformations import optimizeForMKLDNN import caffe2.python.hypothesis_test_util as hu @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") class PreConvertTest(hu.HypothesisTestCase): @given(input_channels=st.integers(15, 16), batch_size=st.integers(1, 3)) def test_preConvert(self, input_channels, batch_size): def AddModel(model, data): conv1 = brew.conv(model, data, 'conv1', dim_in=input_channels, dim_out=10, kernel=3, stride=1, pad=1, training_mode=1) deconv1 = brew.conv_transpose(model, conv1, 'deconv1', dim_in=10, dim_out=10, kernel=2, stride=2, pad=0, training_mode=1) fc1 = brew.fc(model, deconv1, 'fc1', dim_in=10 * 56 * 56, dim_out=3) softmax = brew.softmax(model, fc1, 'softmax') return softmax def AddTrainingOperators(model, softmax, label): """Adds training operators to the model.""" # Compute cross entropy between softmax scores and labels xent = model.LabelCrossEntropy([softmax, label], 'xent') # Compute the expected loss loss = model.AveragedLoss(xent, "loss") # Use the average loss we just computed to add gradient operators to the model model.AddGradientOperators([loss]) arg_scope = {"order": "NCHW", 'no_bias': False} # Create the model helper for the train model device_opt = core.DeviceOption(caffe2_pb2.IDEEP, 0) with core.DeviceScope(device_opt): train_model = model_helper.ModelHelper(name="test_train", arg_scope=arg_scope) # Add the model definition (fc layers, conv layers, softmax, etc.) softmax = AddModel(train_model, "X") AddTrainingOperators(train_model, softmax, "label") X = np.random.rand( batch_size, input_channels, 28, 28).astype(np.float32) - 0.5 label = np.random.randint(3, size=batch_size).astype(np.int32) blob_dict = {} output_dict = {} output_dict_cosim = {} old_ws_name = workspace.CurrentWorkspace() workspace.FeedBlob('X', X) workspace.FeedBlob('label', label) workspace.RunNetOnce(train_model.param_init_net) for op in train_model.net.Proto().op: if op.type == "Softmax": break for j in range(1, len(op.input)): blob_dict[op.input[j]] = workspace.FetchBlob(op.input[j]) workspace.CreateNet(train_model.net, overwrite=True) optimizeForMKLDNN(train_model.net, training_mode=True) workspace.RunNet(train_model.net) for op in train_model.net.Proto().op: for blob in op.output: output_dict[blob] = workspace.FetchBlob(blob) workspace.SwitchWorkspace("_device_check_", True) workspace.FeedBlob('X', X) workspace.FeedBlob('label', label) for blob in blob_dict.keys(): workspace.FeedBlob(blob, blob_dict[blob]) workspace.CreateNet(train_model.net, overwrite=True) workspace.RunNet(train_model.net) for blob in output_dict.keys(): output_dict_cosim[blob] = workspace.FetchBlob(blob) for blob in output_dict.keys(): if not np.allclose(output_dict[blob], output_dict_cosim[blob], atol=0.001, rtol=0.0001): print("blob {} error".format(blob)) print(np.max(np.abs(output_dict[blob] - output_dict_cosim[blob]))) self.assertTrue(False) workspace.ResetWorkspace() workspace.SwitchWorkspace(old_ws_name) if __name__ == "__main__": unittest.main()