#pragma once // Parse arguments to Python functions implemented in C++ // This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles // the types relevant to PyTorch and distinguishes between overloaded function // signatures. // // Example: // // static PythonArgParser parser({ // "norm(Scalar p, int64_t dim, bool keepdim=False)", // "norm(Scalar p=2)", // }); // ParsedArgs<3> parsed_args; // auto r = parser.parse(args, kwargs, parsed_args); // if (r.idx == 0) { // norm(r.scalar(0), r.int64(1), r.bool(0)); // } else { // norm(r.scalar(0)); // } // // We auto-generate most uses of PythonArgParser; the generated files // are torch/csrc/autograd/generated/python_*.cpp // // Some gotchas that you should watch out for: // // - Note [Order of overloads matters] // Order of overloads matters. A set of input arguments may // bind to multiple argument specs; we will always pick the // first one in PythonArgParser. However, when you are writing // overloads in, e.g., native_functions.yaml, you don't have to // worry about what order you write them, because the code // generation logic always gives the overloads a canonical // order, where Tensor overloads come first, before Scalar overloads. // This logic is in sort_declarations in // tools/autograd/gen_python_functions.py // // - Zero-dim tensors (e.g., torch.tensor(2)) bind to both // Scalar and Tensor, UNLESS they require grad (in which case // they only bind to Tensor). #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { enum class ParameterType { TENSOR, SCALAR, INT64, DOUBLE, COMPLEX, TENSOR_LIST, INT_LIST, GENERATOR, BOOL, STORAGE, PYOBJECT, SCALARTYPE, LAYOUT, MEMORY_FORMAT, DEVICE, STREAM, STRING, DIMNAME, DIMNAME_LIST, QSCHEME, FLOAT_LIST, SCALAR_LIST }; struct FunctionParameter; struct FunctionSignature; struct PythonArgs; // Contains bound Python arguments in declaration order template struct ParsedArgs { ParsedArgs() : args() { } // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) PyObject* args[N]; }; struct PythonArgParser { explicit PythonArgParser(std::vector fmts, bool traceable=false); // meant only for `torch` functions. template inline PythonArgs parse(PyObject* self, PyObject* args, PyObject* kwargs, ParsedArgs& dst); template inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs& dst); inline PythonArgs parse(PyObject* self, ParsedArgs<0>& dst); // Formatted strings of non-hidden signatures std::vector get_signatures() const; private: [[noreturn]] // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) void print_error(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* parsed_args[]); void check_deprecated(const FunctionSignature & signature); // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) PythonArgs raw_parse(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* parsed_args[]); std::vector signatures_; std::string function_name; ssize_t max_args; bool traceable; }; struct PYBIND11_EXPORT FunctionSignature { explicit FunctionSignature(const std::string& fmt, int index); // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) bool parse(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception); std::string toString() const; std::string name; std::vector params; std::vector overloaded_args; ssize_t min_args; ssize_t max_args; ssize_t max_pos_args; int index; bool hidden; bool deprecated; bool disable_torch_function; }; struct PythonArgs { PythonArgs(bool traceable, const FunctionSignature& signature, PyObject** args) : idx(signature.index) , traceable(traceable) , signature(signature) , args(args) {} int idx; bool traceable; const FunctionSignature& signature; PyObject** args; inline bool has_torch_function(); inline std::string get_func_name(); inline at::Tensor tensor(int i); inline c10::optional optionalTensor(int i); inline at::Scalar scalar(int i); inline at::Scalar scalarWithDefault(int i, const at::Scalar& default_scalar); inline std::vector scalarlist(int i); inline std::vector tensorlist(int i); inline torch::List> list_of_optional_tensors(int i); template inline std::array tensorlist_n(int i); inline std::vector intlist(int i); inline c10::OptionalArray intlistOptional(int i); inline std::vector intlistWithDefault(int i, std::vector default_intlist); inline c10::optional generator(int i); inline at::Storage storage(int i); inline c10::Stream stream(int i); inline at::ScalarType scalartype(int i); inline at::ScalarType scalartypeWithDefault(int i, at::ScalarType default_scalartype); inline c10::optional scalartypeOptional(int i); inline c10::optional scalarOptional(int i); inline c10::optional toInt64Optional(int i); inline c10::optional toBoolOptional(int i); inline c10::optional toDoubleOptional(int i); inline c10::OptionalArray doublelistOptional(int i); inline std::vector doublelist(int i); inline std::vector getDoublelist(int i); inline at::Layout layout(int i); inline at::Layout layoutWithDefault(int i, at::Layout default_layout); inline c10::optional layoutOptional(int i); inline at::Device device(int i); inline at::Device deviceWithDefault(int i, const at::Device& default_device); inline c10::optional deviceOptional(int i); inline at::Dimname dimname(int i); inline std::vector dimnamelist(int i); inline c10::optional> toDimnameListOptional(int i); inline at::MemoryFormat memoryformat(int i); inline c10::optional memoryformatOptional(int i); inline at::QScheme toQScheme(int i); inline std::string string(int i); inline std::string stringWithDefault(int i, const std::string& default_str); inline c10::optional stringOptional(int i); inline c10::string_view stringView(int i); inline c10::string_view stringViewWithDefault(int i, const c10::string_view default_str); inline c10::optional stringViewOptional(int i); inline PyObject* pyobject(int i); inline int64_t toInt64(int i); inline int64_t toInt64WithDefault(int i, int64_t default_int); inline double toDouble(int i); inline double toDoubleWithDefault(int i, double default_double); inline c10::complex toComplex(int i); inline c10::complex toComplexWithDefault(int i, c10::complex default_complex); inline bool toBool(int i); inline bool toBoolWithDefault(int i, bool default_bool); inline bool isNone(int i); private: at::Tensor tensor_slow(int i); at::Scalar scalar_slow(int i); at::Scalar scalar_slow(PyObject* arg); }; struct FunctionParameter { FunctionParameter(const std::string& fmt, bool keyword_only); bool check(PyObject* obj, std::vector &overloaded_args, int argnum); void set_default_str(const std::string& str); std::string type_name() const; ParameterType type_; bool optional; bool allow_none; bool keyword_only; bool allow_numbers_as_tensors = false; int size; std::string name; // having this as a raw PyObject * will presumably leak it, but these are only held by static objects // anyway, and Py_Finalize can already be called when this is destructed. PyObject *python_name; // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers) at::SmallVector numpy_python_names; at::Scalar default_scalar; std::vector default_intlist; std::string default_string; union { bool default_bool; int64_t default_int; double default_double; // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) double default_complex[2]; // see Scalar at::ScalarType default_scalartype; at::Layout default_layout; }; }; template inline PythonArgs PythonArgParser::parse(PyObject* self, PyObject* args, PyObject* kwargs, ParsedArgs& dst) { if (N < max_args) { throw ValueError("PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)", (int)max_args, N); } return raw_parse(self, args, kwargs, dst.args); } template inline PythonArgs PythonArgParser::parse(PyObject* args, PyObject* kwargs, ParsedArgs& dst) { return parse(nullptr, args, kwargs, dst); } inline PythonArgs PythonArgParser::parse(PyObject* self, ParsedArgs<0>& dst) { return parse(self, nullptr, nullptr, dst); } inline bool PythonArgs::has_torch_function(){ return !this->signature.overloaded_args.empty(); } inline std::string PythonArgs::get_func_name(){ return signature.name; } // TODO: this can return MaybeOwned inline at::Tensor PythonArgs::tensor(int i) { if (args[i] && THPVariable_CheckExact(args[i])) { return THPVariable_Unpack(args[i]); } return tensor_slow(i); } inline c10::optional PythonArgs::optionalTensor(int i) { at::Tensor t = tensor(i); // NOLINTNEXTLINE(bugprone-branch-clone) if (t.defined()) { return t; } else { return c10::nullopt; } } inline at::Scalar PythonArgs::scalar(int i) { if (!args[i]) return signature.params[i].default_scalar; return scalar_slow(i); } inline std::vector PythonArgs::scalarlist(int i) { if (!args[i]) return std::vector(); auto tuple = six::isTuple(args[i]); THPObjectPtr arg = six::maybeAsTuple(args[i]); // NOLINTNEXTLINE(bugprone-branch-clone) auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get()); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) std::vector res(size); for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx); res[idx] = scalar_slow(obj); } return res; } inline at::Scalar PythonArgs::scalarWithDefault(int i, const at::Scalar& default_scalar) { if (!args[i]) return default_scalar; return scalar_slow(i); } inline c10::optional PythonArgs::scalarOptional(int i) { if (!args[i]) return c10::nullopt; return scalar_slow(i); } inline std::vector PythonArgs::tensorlist(int i) { if (!args[i]) return std::vector(); auto tuple = six::isTuple(args[i]); THPObjectPtr arg = six::maybeAsTuple(args[i]); // NOLINTNEXTLINE(bugprone-branch-clone) auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get()); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) std::vector res(size); for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx); // This is checked by the argument parser so it's safe to cast without checking // if this is a tensor first res[idx] = THPVariable_Unpack(obj); } return res; } inline torch::List> PythonArgs::list_of_optional_tensors(int i) { if (!args[i]) return torch::List>(); auto tuple = six::isTuple(args[i]); THPObjectPtr arg = six::maybeAsTuple(args[i]); // NOLINTNEXTLINE(bugprone-branch-clone) auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get()); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) torch::List> res; res.reserve(size); for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx); // This is checked by the argument parser so it's safe to cast without checking // if this is a tensor first res.push_back(THPVariable_Unpack(obj)); } return res; } template inline std::array PythonArgs::tensorlist_n(int i) { auto res = std::array(); if (!args[i]) return res; auto tuple = six::isTuple(args[i]); THPObjectPtr arg = six::maybeAsTuple(args[i]); // NOLINTNEXTLINE(bugprone-branch-clone) auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get()); if (size != N) { throw TypeError("expected tuple of %d elements but got %d", N, (int)size); } for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx); // This is checked by the argument parser so it's safe to cast without checking // if this is a tensor first res[idx] = THPVariable_Unpack(obj); } return res; } inline std::vector PythonArgs::intlist(int i) { return intlistWithDefault(i, signature.params[i].default_intlist); } inline std::vector PythonArgs::intlistWithDefault(int i, std::vector default_intlist) { if (!args[i]) return default_intlist; PyObject* arg = args[i]; const auto size1 = signature.params[i].size; if (size1 > 0 && THPUtils_checkLong(arg)) { return std::vector(size1, THPUtils_unpackIndex(arg)); } auto tuple = PyTuple_Check(arg); // NOLINTNEXTLINE(bugprone-branch-clone) const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) std::vector res(size2); for(const auto idx : c10::irange(size2)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx); try { // Elements of torch.Size are tensors during tracing, and we need to record extra // information before they are turned into an IntArrayRef if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) { auto & var = THPVariable_Unpack(obj); jit::tracer::ArgumentStash::stashIntArrayRefElem( signature.params[i].name, size2, idx, var); res[idx] = var.item(); continue; } else { res[idx] = THPUtils_unpackIndex(obj); } } catch (const std::exception &e) { throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %ld", signature.name.c_str(), signature.params[i].name.c_str(), signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1); } } return res; } inline c10::OptionalArray PythonArgs::intlistOptional(int i) { if (!args[i]) { return {}; } return intlist(i); } inline std::vector PythonArgs::getDoublelist(int i) { PyObject* arg = args[i]; auto tuple = PyTuple_Check(arg); // NOLINTNEXTLINE(bugprone-branch-clone) auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) std::vector res(size); for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx); try { res[idx] = THPUtils_unpackDouble(obj); } catch (const std::exception &e) { throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %ld", signature.name.c_str(), signature.params[i].name.c_str(), signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1); } } return res; } inline c10::OptionalArray PythonArgs::doublelistOptional(int i) { if (!args[i]) { return {}; } return this->getDoublelist(i); } inline std::vector PythonArgs::doublelist(int i) { if (!args[i]) { return {}; } return this->getDoublelist(i); } inline at::ScalarType PythonArgs::scalartypeWithDefault(int i, at::ScalarType default_scalartype) { if (!args[i]) return default_scalartype; return scalartype(i); } inline at::ScalarType PythonArgs::scalartype(int i) { if (!args[i]) { auto scalartype = signature.params[i].default_scalartype; return (scalartype == at::ScalarType::Undefined) ? torch::tensors::get_default_scalar_type() : scalartype; } PyObject *obj = args[i]; if (obj == (PyObject*)&PyFloat_Type) { return at::ScalarType::Double; } if (obj == (PyObject*)&PyBool_Type) { return at::ScalarType::Bool; } if (obj == (PyObject*)&PyLong_Type) { return at::ScalarType::Long; } return reinterpret_cast(obj)->scalar_type; } inline c10::optional PythonArgs::scalartypeOptional(int i) { if (!args[i]) return c10::nullopt; return scalartype(i); } inline at::Layout PythonArgs::layout(int i) { if (!args[i]) return signature.params[i].default_layout; return reinterpret_cast(args[i])->layout; } inline at::Layout PythonArgs::layoutWithDefault(int i, at::Layout default_layout) { if (!args[i]) return default_layout; return layout(i); } inline c10::optional PythonArgs::layoutOptional(int i) { if (!args[i]) return c10::nullopt; return layout(i); } inline at::Device PythonArgs::device(int i) { if (!args[i]) { return at::Device(backendToDeviceType(dispatchKeyToBackend(torch::tensors::get_default_dispatch_key()))); } if (THPDevice_Check(args[i])) { const auto device = reinterpret_cast(args[i]); return device->device; } if (THPUtils_checkLong(args[i])) { const auto device_index = THPUtils_unpackLong(args[i]); TORCH_CHECK(device_index >= 0, "Device index must not be negative"); return at::Device(DeviceType::CUDA, device_index); } const std::string &device_str = THPUtils_unpackString(args[i]); return at::Device(device_str); } inline at::Device PythonArgs::deviceWithDefault(int i, const at::Device& default_device) { if (!args[i]) return default_device; return device(i); } inline c10::optional PythonArgs::deviceOptional(int i) { if (!args[i]) return c10::nullopt; return device(i); } inline at::Dimname PythonArgs::dimname(int i) { TORCH_INTERNAL_ASSERT(args[i] != nullptr); return THPDimname_parse(args[i]); } inline std::vector parseDimnameList(PyObject* arg) { auto tuple = PyTuple_Check(arg); // NOLINTNEXTLINE(bugprone-branch-clone) auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) std::vector res; res.reserve(size); for(const auto idx : c10::irange(size)) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx); res.push_back(THPDimname_parse(obj)); } return res; } inline c10::optional> PythonArgs::toDimnameListOptional(int i) { if (!args[i]) return c10::nullopt; return parseDimnameList(args[i]); } inline std::vector PythonArgs::dimnamelist(int i) { TORCH_INTERNAL_ASSERT(args[i]); PyObject* arg = args[i]; auto size = signature.params[i].size; TORCH_INTERNAL_ASSERT(size == 0 || size == 1); if (size == 1 && THPUtils_checkDimname(arg)) { return { THPDimname_parse(arg) }; } return parseDimnameList(arg); } inline at::MemoryFormat PythonArgs::memoryformat(int i) { if (!args[i]) return at::MemoryFormat::Contiguous; TORCH_CHECK(THPMemoryFormat_Check(args[i]), "memory_format arg must be an instance of the torch.memory_format"); const auto memory_format = reinterpret_cast(args[i]); return memory_format->memory_format; } inline c10::optional PythonArgs::memoryformatOptional(int i) { if (!args[i]) return c10::nullopt; return memoryformat(i); } inline at::QScheme PythonArgs::toQScheme(int i) { if (!args[i]) return at::kPerTensorAffine; TORCH_CHECK(THPQScheme_Check(args[i]), "qscheme arg must be an instance of the torch.qscheme"); const auto qscheme = reinterpret_cast(args[i]); return qscheme->qscheme; } inline std::string PythonArgs::string(int i) { return stringWithDefault(i, signature.params[i].default_string); } inline std::string PythonArgs::stringWithDefault(int i, const std::string& default_str) { if (!args[i]) return default_str; return THPUtils_unpackString(args[i]); } inline c10::optional PythonArgs::stringOptional(int i) { if (!args[i]) return c10::nullopt; return THPUtils_unpackString(args[i]); } inline c10::string_view PythonArgs::stringView(int i) { return stringViewWithDefault(i, signature.params[i].default_string); } inline c10::string_view PythonArgs::stringViewWithDefault(int i, const c10::string_view default_str) { if (!args[i]) return default_str; return THPUtils_unpackStringView(args[i]); } inline c10::optional PythonArgs::stringViewOptional(int i) { if (!args[i]) return c10::nullopt; return THPUtils_unpackStringView(args[i]); } inline int64_t PythonArgs::toInt64(int i) { if (!args[i]) return signature.params[i].default_int; if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) { auto & var = THPVariable_Unpack(args[i]); jit::tracer::ArgumentStash::stashValue( signature.params[i].name, idx, var, jit::IntType::get()); } return THPUtils_unpackLong(args[i]); } inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) { if (!args[i]) return default_int; return toInt64(i); } inline c10::optional PythonArgs::toInt64Optional(int i) { if (!args[i]) return c10::nullopt; return toInt64(i); } inline c10::optional PythonArgs::toBoolOptional(int i) { if (!args[i]) { return c10::nullopt; } return toBool(i); } inline c10::optional PythonArgs::toDoubleOptional(int i) { if (!args[i]) { return c10::nullopt; } return toDouble(i); } inline double PythonArgs::toDouble(int i) { if (!args[i]) return signature.params[i].default_double; return THPUtils_unpackDouble(args[i]); } inline double PythonArgs::toDoubleWithDefault(int i, double default_double) { if (!args[i]) return default_double; return toDouble(i); } inline c10::complex PythonArgs::toComplex(int i) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) c10::complex default_value = *const_cast *>( reinterpret_cast *>(signature.params[i].default_complex)); if (!args[i]) return default_value; return THPUtils_unpackComplexDouble(args[i]); } inline c10::complex PythonArgs::toComplexWithDefault(int i, c10::complex default_value) { if (!args[i]) return default_value; return toComplex(i); } inline bool PythonArgs::toBool(int i) { if (!args[i]) return signature.params[i].default_bool; return args[i] == Py_True; } inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) { if (!args[i]) return default_bool; return toBool(i); } inline bool PythonArgs::isNone(int i) { return args[i] == nullptr; } inline c10::optional PythonArgs::generator(int i) { if (!args[i]) return c10::nullopt; return reinterpret_cast(args[i])->cdata; } inline at::Storage PythonArgs::storage(int i) { if (!args[i]) return at::Storage(); return createStorage(args[i]); } inline c10::Stream PythonArgs::stream(int i) { if (!args[i]) return c10::Stream(c10::Stream::Default::DEFAULT, c10::Device(DeviceType::CPU, -1)); if (!THPStream_Check(args[i])) { throw TypeError("expected Stream object. Got '%s'", Py_TYPE(args[i])->tp_name); } return c10::Stream::unpack(((THPStream*)args[i])->cdata); } inline PyObject* PythonArgs::pyobject(int i) { if (!args[i]) return Py_None; return args[i]; } /* * * Handle __torch_function__ overrides if we know that there are overloaded * arguments. All objects stored in r.overloaded_args must have a * __torch_function__ implementation and the arguments must be ordered in order * of precedence. Precedence goes from left to right in the order of the * signature of the function the overloaded arguments were passed to, except * subclasses are always considered before superclasses. * * If the result of calling __torch_function__ is NotImplemented, the * next implementation in the precedence order is called. If all * arguments return NotImplemented from their __torch_function__ * implementation, a TypeError is raised in Python. * * Assumes overloaded_args has at least one entry. All entries must have * a __torch_function__ attribute that resolves to a callable that * accepts a torch API function, a tuple of arguments, and a dict of * keyword arguments for the torch API function. * * It is sufficient to call PythonArgs::has_torch_function before * calling this function to verify that there are valid arguments * present. If that is not done then special care must be taken to * ensure there are arguments that are overloaded with * __torch_function__. * * See torch._overrides.handle_torch_function for the equivalent * code in the pure-python implementation. * * 'r' is a parsed PythonArgs instance, returned from * PythonArgParser::parse. * * 'args' is a reference to the python tuple of arguments to the torch * API function. * * 'kwargs' is a reference to the python dict of keyword arguments to * the torch API function. * * 'torch_api' is a reference to a python torch API namespace. * * 'torch_api_function' is the reference to the original torch method, usually, * we can use torch_api and func_name to get torch_api_function. In some cases, * e.g., torch custom op, we create the function in C++, if we still use * torch_api and func_name to fetch original api, a cyclic call will happen. * * 'overloaded_args' is the args which have overloaded __torch_function__. * * 'func_name' is the named of the original torch method. * * TODO: we could use different names for the following 'handle_torch_function' * instead of overloading. * */ // Used for Tensor methods with arguments. auto handle_torch_function(PythonArgs &r, PyObject* self, PyObject* args, PyObject* kwargs, PyObject* torch_api, const char* module_name) -> PyObject*; // Used for functions which needs to parse python args. auto handle_torch_function(PythonArgs &r, PyObject* args, PyObject* kwargs, PyObject* torch_api, const char* module_name) -> PyObject*; // Used for functions that have no argument parsing. auto handle_torch_function(PyObject* self, const std::string& func_name, PyObject* args=nullptr, PyObject* kwargs=nullptr, PyObject* torch_api=THPVariableClass, const std::string& module_name="torch.Tensor") -> PyObject*; // Used for functions created in C++, e.g., C++ custom op, which doesn't use PythonArgParser to get overloaded_args. auto handle_torch_function_no_python_arg_parser(const std::vector &overloaded_args, PyObject* args, PyObject* kwargs, const char* func_name, PyObject* torch_api_function, const char* module_name, const char* torch_function_name = "__torch_function__") -> PyObject*; // Used for getters of Tensor properties auto handle_torch_function_getter(THPVariable* self, const std::string& property_name) -> PyObject*; // Used for setters of Tensor properties. auto handle_torch_function_setter(THPVariable* self, const std::string& property_name, PyObject* value) -> int; // Used for __getitem__ and __setitem__ auto handle_torch_function_indexing(PyObject* self, PyObject* index, PyObject* val=nullptr) -> PyObject*; /* * Check if the input obj is Tensor type, including its subclass, or overloaded * type. If the type defines __torch_function__, it also returns true. * Otherwise returns flase. If the class is not torch.Tensor, and it defines * __torch_function__, we append obj to overloaded_args. * * 'obj': the input argument to be checked * 'overloaded_args': the vector to append the overloaded args. */ bool is_tensor_and_append_overloaded(PyObject* obj, std::vector* overloaded_args); /* * Check if the input obj is Tensor List or Tensor Tuple type. First check * whether obj is Tuple or List type, if true, iterate over each element and * check whether it is Tensor type, including its subclass or overloaded type. * At the same time, the overloaded arg is appended to the overloaded_args. * * 'obj': the input argument to be checked * 'overloaded_args': the vector to append the overloaded args. * 'argnum': the number of total arguments of the function being checked. * 'throw_error': whether throw error if any element in the list or tuple is * not tensor type or overloaded. */ bool is_tensor_list_and_append_overloaded(PyObject* obj, std::vector* overloaded_args, int argnum, bool throw_error); /* Given an argument that is definitely a tensor and is definitely overloaded, * append it to the overloaded arguments list. Use this instead of * is_tensor_and_append_overloaded in situations where you have a PyObject * and you know it definitely is a Tensor and it is definitely overloaded. * * 'overloaded_args': the vector to append the overloaded args * 'obj': the input tensor that is overloaded */ void append_overloaded_tensor(std::vector* overloaded_args, PyObject* obj); /* Given an argument that is definitely a type and is definitely overloaded, * append it to the overloaded arguments list. Use this only with __torch_dispatch__, * where we operate on classes that have a __torch_dispatch__ classmethod. * * 'overloaded_args': the vector to append the overloaded type * 'obj': the input class that has a __torch_dispatch__ classmethod. */ void append_overloaded_type(std::vector* overloaded_args, PyObject* obj); } // namespace torch