from typing import Callable import torch from torch.fx import GraphModule from torch._prims.utils import TensorMeta, getnvFuserDtype from torch._prims.context import PrimContext import torch.overrides if torch.cuda.is_available(): from torch._C._nvfuser import Fusion, FusionDefinition # type: ignore[import] def execute(ctx: PrimContext, *args, executor: str = "aten", **kwargs): """ Prototype ATen executor. Just executes the context's graph. """ if executor == "aten": gm = GraphModule({}, ctx.graph) return gm.forward(*args, **kwargs) elif executor == "nvfuser": if not torch.cuda.is_available(): raise RuntimeError( "Attempting to use nvFuser trace executor but CUDA is not available!" ) # PROTOTYPE nvfuser executor # Only accepts tensor inputs and single tensor outputs # Does not handle kwargs # Does not support reusing the same ctx to execute! assert len(kwargs) == 0 # TODO: make this a proper trace -> trace transform that # doesn't mutate the context graph_fd = ctx.graph.placeholder("fd") ctx.graph._root.append(graph_fd) fusion = Fusion() with FusionDefinition(fusion) as fd: # Transforms graph to call nvfuser lowerings nv_args = [fd] for arg in args: if isinstance(arg, torch.Tensor): x = fd.define_tensor(arg.ndim, getnvFuserDtype(arg.dtype)) fd.add_input(x) nv_args.append(x) else: nv_args.append(x) for x in ctx.graph.nodes: if x.op == "call_function": x.target = x.target.impl_nvfuser x.args = (graph_fd,) + x.args gm = GraphModule({}, ctx.graph) out = gm.forward(*nv_args) fd.add_output(out) return fusion.execute( tuple(arg for arg in args if isinstance(arg, torch.Tensor)) )[0] msg = "Received unexpected value for 'executor': {0}. Allowed values are: aten, nvfuser.".format( executor ) raise ValueError(msg) def make_traced(fn: Callable): """ Returns a function that, when called, will trace its torch operations to prims and then execute those prims on the requested trace executor (possibly lowering them to that trace executor first). Only supports the torch operations defined in _torch_to_reference_map in context.py and operations with positional args. All args must be tensors and the function must return a single tensor. In the near future all these restrictions will be lifted. Example usage: def foo(a, b): return torch.add(a, b) traced_foo = make_traced(foo) a = torch.randn((1, 2, 3, 4, 5), device='cuda') b = torch.randn((1, 2, 3, 4, 5), device='cuda') result = traced_foo(a, b, executor='nvfuser') Executor may be either 'aten' or 'nvfuser'. """ def _traced(*args, executor="aten"): ctx: PrimContext with torch.overrides.push_torch_function_mode(PrimContext) as ctx: # type: ignore[attr-defined, assignment] placeholders = [] for arg in args: if isinstance(arg, torch.Tensor): placeholders.append(ctx.placeholder(TensorMeta(arg))) else: placeholders.append(ctx.placeholder(arg)) result = fn(*placeholders) ctx.output(result) return execute(ctx, *args, executor=executor) return _traced