from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, scope import numpy as np import logging class ParameterType(object): DENSE = 'dense' SPARSE = 'sparse' class ParameterInfo(object): def __init__( self, param_id, param, key=None, shape=None, length=None): assert isinstance(param, core.BlobReference) self.param_id = param_id self.name = str(param) self.blob = param self.key = key self.shape = shape self.size = None if shape is None else np.prod(shape) self.length = max(1, length if length is not None else 1) self.grad = None self._cloned_init_net = None def grad_type(self): assert self.grad is not None, ( 'Gradient not defined for parameter %s' % self.name) return ( ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice) else ParameterType.DENSE) def cloned_init_net(self): if not self._cloned_init_net: init_net, outputs = self.blob.Net().ClonePartial( 'param_%d_%s_init' % (self.param_id, self.name), inputs=[], outputs=[self.blob]) self._cloned_init_net = (init_net, outputs[0]) return self._cloned_init_net def __str__(self): return self.name class ModelHelperBase(object): """A helper model so we can write models more easily, without having to manually define parameter initializations and operators separately. In order to add support for specific operators, inherit from this class and add corresponding methods. Operator representing methods should take care of adding their parameters to params """ def __init__(self, name=None, init_params=True, allow_not_known_ops=True, skip_sparse_optim=False): self.name = name or "model" self.net = core.Net(self.name) self.param_init_net = core.Net(self.name + '_init') self.param_to_grad = {} self.params = [] self.computed_params = [] self._param_info = [] self._devices = [] self.gradient_ops_added = False self.init_params = init_params self.allow_not_known_ops = allow_not_known_ops self.skip_sparse_optim = skip_sparse_optim def _infer_param_shape(self, param): for op in self.param_init_net.Proto().op: if str(param) in op.output: for arg in op.arg: if arg.name == "shape": return list(arg.ints) return None def _update_param_info(self): assert len(self._param_info) <= len(self.params) for param in self.params[len(self._param_info):]: if not isinstance(param, core.BlobReference): param = core.BlobReference(str(param), net=self._param_init_net) self._param_info.append(ParameterInfo( param_id=len(self._param_info), param=param, shape=self._infer_param_shape(param))) for info in self._param_info: info.grad = self.param_to_grad.get(info.name) def add_param(self, param, key=None, shape=None, length=None): self._update_param_info() if key is not None and self.net.input_record() is not None: idx = self.net.input_record().field_blobs().index(key) key = self.net.input_record().field_names()[idx] shape = shape if shape is not None else self._infer_param_shape(param) self.params.append(param) if not isinstance(param, core.BlobReference): param = core.BlobReference(str(param), net=self._param_init_net) self._param_info.append(ParameterInfo( param_id=len(self._param_info), param=param, shape=shape, key=key, length=length, )) return self._param_info[-1] def param_info(self, grad_type=None, id=None): self._update_param_info() if id is not None: assert grad_type is None info = self._param_info[id] assert info.param_id == id return info elif grad_type is not None: return [ info for info in self._param_info if info.grad_type() == grad_type] else: return self._param_info def GetParams(self, namescope=None): ''' Returns the params in current namescope ''' if namescope is None: namescope = scope.CurrentNameScope() else: if not namescope.endswith(scope._NAMESCOPE_SEPARATOR): namescope += scope._NAMESCOPE_SEPARATOR if namescope == '': return self.params[:] else: return [p for p in self.params if p.GetNameScope() == namescope] def Proto(self): return self.net.Proto() def InitProto(self): return self.param_init_net.Proto() def RunAllOnGPU(self, *args, **kwargs): self.param_init_net.RunAllOnGPU(*args, **kwargs) self.net.RunAllOnGPU(*args, **kwargs) def CreateDB(self, blob_out, db, db_type, **kwargs): dbreader = self.param_init_net.CreateDB( [], blob_out, db=db, db_type=db_type, **kwargs) return dbreader def AddGradientOperators(self, *args, **kwargs): if self.gradient_ops_added: raise RuntimeError("You cannot run AddGradientOperators twice.") self.gradient_ops_added = True self.grad_map = self.net.AddGradientOperators(*args, **kwargs) self.param_to_grad = self.get_param_to_grad(self.params) return self.grad_map def get_param_to_grad(self, params): ''' Given a list of parameters returns a dict from a parameter to a corresponding gradient ''' param_to_grad = {} if not self.gradient_ops_added: raise RuntimeError("You need to run AddGradientOperators first.") # We need to use empty namescope when creating the gradients # to prevent duplicating the namescope prefix for gradient blobs. for p in params: if str(p) in self.grad_map: param_to_grad[p] = self.grad_map[str(p)] return param_to_grad def GetOptimizationPairs(self, params=None): ''' Returns a map for param => grad. If params is not specified, all parameters will be considered. ''' if not self.gradient_ops_added: raise RuntimeError("Need to call AddGradientOperators first") param_to_grad = self.param_to_grad if params: param_to_grad = self.get_param_to_grad(params) if not self.skip_sparse_optim: return param_to_grad else: return {param: grad for param, grad in param_to_grad.items() if not isinstance(grad, core.GradientSlice)} def GetComputedParams(self, namescope=None): ''' Returns the computed params in current namescope. 'Computed params' are such parameters that are not optimized via gradient descent but are directly computed from data, such as the running mean and variance of Spatial Batch Normalization. ''' if namescope is None: namescope = scope.CurrentNameScope() else: if not namescope.endswith(scope._NAMESCOPE_SEPARATOR): namescope += scope._NAMESCOPE_SEPARATOR if namescope == '': return self.computed_params[:] else: return [p for p in self.computed_params if p.GetNameScope() == namescope] def GetAllParams(self, namescope=None): return self.GetParams(namescope) + self.GetComputedParams(namescope) def TensorProtosDBInput( self, unused_blob_in, blob_out, batch_size, db, db_type, **kwargs ): """TensorProtosDBInput.""" dbreader_name = "dbreader_" + db dbreader = self.param_init_net.CreateDB( [], dbreader_name, db=db, db_type=db_type) return self.net.TensorProtosDBInput( dbreader, blob_out, batch_size=batch_size) def AddOperator(self, op_type, inputs, parameters, *args, **kwargs): """ Adds an operator to a model. Use parameters list to specify which operator inputs are model parameters to be optimized. Example of usage: model.SparseLengthsSum( [embedding, indices, lengths], parameters=[embedding], ) Here embedding is a parameter to be optimized while indices and lengths are not. """ extra_parameters = filter(lambda x: (x not in inputs), parameters) if len(extra_parameters) > 0: raise Exception("Some parameters are not inputs: {}".format( map(str, extra_parameters) )) self.params.extend(parameters) return self.net.__getattr__(op_type)(inputs, *args, **kwargs) def GetDevices(self): assert len(self._devices) > 0, \ "Use data_parallel_model to run model on multiple GPUs." return self._devices def __getattr__(self, op_type): """Catch-all for all other operators, mostly those without params.""" if op_type.startswith('__'): raise AttributeError(op_type) if not core.IsOperator(op_type): raise RuntimeError( 'Method ' + op_type + ' is not a registered operator.' ) # known_working_ops are operators that do not need special care. known_working_ops = [ "Accuracy", "Adam", "Add", "Adagrad", "SparseAdagrad", "AveragedLoss", "Cast", "Checkpoint", "ConstantFill", "CopyGPUToCPU", "CopyCPUToGPU", "DequeueBlobs", "EnsureCPUOutput", "FlattenToVec", "LabelCrossEntropy", "LearningRate", "MakeTwoClass", "MatMul", "NCCLAllreduce", "NHWC2NCHW", "PackSegments", "Print", "PRelu", "Scale", "ScatterWeightedSum", "Sigmoid", "SortedSegmentSum", "Snapshot", # Note: snapshot is deprecated, use Checkpoint "Softmax", "SoftmaxWithLoss", "SquaredL2Distance", "Squeeze", "StopGradient", "Summarize", "Tanh", "UnpackSegments", "WeightedSum", ] if op_type not in known_working_ops: if not self.allow_not_known_ops: raise RuntimeError( "Operator {} is not known to be safe".format(op_type)) logging.warning("You are creating an op that the ModelHelperBase " "does not recognize: {}.".format(op_type)) return self.net.__getattr__(op_type)