#!/usr/bin/env python3 import click import numpy as np import torch from operator_inp_utils import OperatorInputsLoader from torch._dynamo.backends.cudagraphs import cudagraphs_inner from torch._dynamo.testing import same from torch._inductor.compile_fx import compile_fx from torch._inductor.decomposition import decompositions from torch._inductor.lowering import fallbacks, lowerings from torch._inductor.utils import gen_gm_and_inputs aten = torch.ops.aten def compute_speedups( operator, models, example_inputs, repeats, accuracy_checking=False, device="cuda" ): expected = models[0](*example_inputs) if accuracy_checking: for model in models[1:]: actual = model(*example_inputs) # change to assert later try: same(actual, expected, cos_similarity=True, equal_nan=True) except AssertionError as e: print(e) print(f"Accuracy check failed: {operator}") print((expected[0] - actual[0]).abs().max()) timings = np.zeros((repeats, len(models)), np.float64) for rep in range(repeats): # interleave the runs to handle frequency scaling and load changes for m, model in enumerate(models): if device == "cuda": import triton # do_bench() clears L2 cache to hide the latency of CPU launch time # along with cuda synchronization median_ms, _, _ = triton.testing.do_bench( lambda: model(*example_inputs) ) timings[rep, m] = median_ms else: from torch._inductor.utils import timed timings[rep, m] = timed(model, example_inputs) return np.median(timings, axis=0) def strip_overloads(gm): """ Modifies the target of graph nodes in :attr:`gm` to strip overloads. Args: gm(fx.GraphModule): The input Fx graph module to be modified """ for node in gm.graph.nodes: if isinstance(node.target, torch._ops.OpOverload): node.target = node.target.overloadpacket gm.recompile() def convert_to_jit(gm, gm_args): strip_overloads(gm) try: return torch.jit.script(gm) except Exception: pass return torch.jit.trace(gm, gm_args) def microbenchmark( operator, args, kwargs, dtype, accuracy_checking, repeats, measure_nvfuser, device ): gm, gm_args = gen_gm_and_inputs(operator, args, kwargs) torch.jit._builtins._register_builtin( torch.ops.aten.convolution_backward.default, "aten::convolution_backward" ) if device == "cuda": cudagraphs_eager = cudagraphs_inner(gm, gm_args, copy_outputs=False) compiled_fn = compile_fx(gm, gm_args) compiled = [cudagraphs_eager, compiled_fn] else: compiled_fn = compile_fx(gm, gm_args) compiled = [gm, compiled_fn] if measure_nvfuser: g = convert_to_jit(gm, gm_args) cudagraphs_jit = cudagraphs_inner(g, gm_args, copy_outputs=False) compiled += [cudagraphs_jit] if accuracy_checking: repeats = 1 medians = compute_speedups( operator, compiled, gm_args, repeats, accuracy_checking, device ) return medians def skip_operator(operator): nyi_strings = ( "aten.gather.default", "nll_loss", "aten.index", "aten.scatter_", "masked_fill_.Scalar", ) if any(nyi_string in str(operator) for nyi_string in nyi_strings): # maybe disable aten.native_layer_norm.default # TODO - inputs cannot be randomly initialized, causes cyda failures print(f"Skipping {operator}, input generator nyi") return True # not covered by other non-compute operator heuristics if operator == torch.ops.aten._unsafe_view.default: print(f"Skipping {operator}, non compute operator") return True # some of inductor registered to the OpOverload, some registered to OpOverloadPacket op_impls = [operator] if isinstance(operator, torch._ops.OpOverload): op_impls.append(operator.overloadpacket) if any(op in fallbacks for op in op_impls): print(f"Skipping {operator}, no inductor impl") return True if all(op not in decompositions and op not in lowerings for op in op_impls): print(f"Skipping {operator}, no inductor impl") return True if "convolution" in str(operator): return True return False @click.command() @click.option( "--suite", help="suite to load inps from: options: timm, huggingface, torchbench", default="torchbench", ) @click.option("--op", help="operator overload to benchmark") @click.option("--dtype", help="dtype to benchmark") @click.option("--max-samples", help="max samples per op", default=15) @click.option("--accuracy-checking", help="check accuracy", default=False) @click.option( "--repeats", help="how many times to repeat for perf measurement", default=3 ) @click.option( "--measure-nvfuser", help="default we only measure inductor", default=False ) @click.option("--device", help="cpu or cuda", default="cuda") @click.option("--inp-file", help="use custom input file instead of suite", default=None) @click.option("--start-idx", help="specify start index of samples", default=0) def benchmark( suite, op, dtype, max_samples, accuracy_checking, repeats, measure_nvfuser, device, inp_file, start_idx, ): if inp_file is not None: loader = OperatorInputsLoader(inp_file) else: assert suite in ("timm", "huggingface", "torchbench"), f"got {suite}" if suite == "timm": loader = OperatorInputsLoader.get_timm_loader() elif suite == "huggingface": loader = OperatorInputsLoader.get_huggingface_loader() else: loader = OperatorInputsLoader.get_torchbench_loader() assert dtype in ("float16", "float32"), f"got {dtype}" if op == "all": filename = f"timings_{suite}_{op.replace('.', '_')}{dtype}.txt" f = open(filename, "a") dtype = torch.float16 if dtype == "float16" else torch.float32 if op == "all": ops = loader.get_all_ops() else: ops = [eval(op)] max_samples = max_samples + start_idx for operator in ops: if skip_operator(operator): continue print(f"Running {operator}") inp_gen = loader.get_inputs_for_operator(operator, dtype=dtype, device=device) timings = [] for i in range(min(max_samples, 1000000)): try: inps = next(inp_gen) if inps is None: break if i < start_idx: continue print(f"Iter {i}") args, kwargs = inps except StopIteration: break try: # aten, nvfuser, inductor timings.append( microbenchmark( operator, args, kwargs, dtype, accuracy_checking, repeats, measure_nvfuser, device, ) ) except Exception as e: print(f"error {operator}") print(e) # comment out this line to avoid blocking other tests # raise e if not timings: continue timings = torch.tensor(timings).T q = torch.tensor([0.2, 0.5, 0.8], dtype=torch.float64) output = f"{operator}:\nInductor Speedups : {(torch.quantile(timings[0] / timings[1], q)).tolist()}\n" if measure_nvfuser: output += f"NVFUSER Speedups :{(torch.quantile(timings[0] / timings[2], q)).tolist()}\n" if op == "all": f.write(output) print(output) if op == "all": f.close() if __name__ == "__main__": benchmark()