from tools.codegen.model import * from tools.codegen.api.types import * import tools.codegen.api.cpp as cpp import tools.codegen.api.native as native import tools.codegen.local as local import itertools from typing import Sequence, Optional, Tuple # This file describes the translation of JIT schema to the dispatcher # API, the *unboxed* calling convention by which invocations through # the dispatcher are made. Historically, the dispatcher API matched # the C++ API, but with the establishment of the boxed API, we've # made changes to the dispatcher API to so that the unboxed API # better aligns with the boxed API. The dispatcher API hooks heavily # into our template based boxing/unboxing machinery, so changes # to this convention will usually need template updates too. # # Prominent characteristics of the dispatcher API: # # - 'use_c10_dispatcher: full' controls whether or not we actually # use the modern calling convention or not. When use_c10_dispatcher # is not enabled, we don't use the template machinery. # # - dtype, layout, device and pin_memory are represented as separate # arguments. # def argumenttype_type(t: Type, *, mutable: bool) -> str: if local.use_c10_dispatcher().dispatcher_uses_new_style(): # This is a faux amis. If it makes sense in the future to add # more special cases here, or invert things so cpp.argument_type # calls this, or just completely inline the function, please do # it. return cpp.argumenttype_type(t, mutable=mutable) else: # This is real sharing. If you're modifying this path, ask # yourself why you are changing the native functions protocol # here and not in native. return native.argumenttype_type(t, mutable=mutable) def argument_type(a: Argument) -> str: return argumenttype_type(a.type, mutable=a.is_write) def returns_type(rs: Sequence[Return]) -> str: # At present, there is no difference. But there could be! return cpp.returns_type(rs) def argument(a: Argument) -> DispatcherArgument: if local.use_c10_dispatcher().dispatcher_uses_new_style(): return DispatcherArgument( type=argument_type(a), name=a.name, argument=a, ) else: la = native.argument(a) assert len(la) == 1, "Operators using the legacy signature in the dispatcher don't scatter TensorOptions." return DispatcherArgument( type=la[0].type, name=la[0].name, argument=la[0].argument, ) def name(func: FunctionSchema) -> str: return cpp.name(func) def arguments(func: FunctionSchema) -> Tuple[DispatcherArgument, ...]: if local.use_c10_dispatcher().dispatcher_uses_new_style(): return tuple(map(argument, itertools.chain(func.out_arguments, func.arguments, func.kwarg_only_arguments))) else: return tuple( DispatcherArgument(type=la.type, name=la.name, argument=la.argument) for la in native.arguments(func) ) # Given a set of CppArguments in scope, return a sequence of dispatcher # expressions that translate the cpp API into dispatcher API # # WARNING: This is unsound if you pass it CppArgument when you were # supposed to pass it CppTensorOptionsArguments, it will directly # translate device to device, which will give you the wrong signature # for dispatcher. If Argument "knew" that it was part of a # TensorOptions that would help us dynamically test for this case def cppargument_exprs( a: CppArgumentPack, *, tensor_options: Optional[CppArgument] ) -> Sequence[DispatcherExpr]: if isinstance(a, CppSingleArgumentPack): if isinstance(a.this.argument, TensorOptionsArguments): if local.use_c10_dispatcher().dispatcher_uses_new_style(): # Scatter ta = a.this.argument name = a.this.name return [ DispatcherExpr(type=argument_type(ta.dtype), expr=f'optTypeMetaToScalarType({name}.dtype_opt())'), DispatcherExpr(type=argument_type(ta.layout), expr=f'{name}.layout_opt()'), DispatcherExpr(type=argument_type(ta.device), expr=f'{name}.device_opt()'), DispatcherExpr(type=argument_type(ta.pin_memory), expr=f'{name}.pinned_memory_opt()'), # weird discrep ] else: # No-op return [DispatcherExpr(type='const TensorOptions &', expr=a.this.name)] elif isinstance(a.this.argument, Argument): if a.this.name == 'memory_format' and \ tensor_options is not None and \ local.use_c10_dispatcher().dispatcher_uses_new_style(): return [DispatcherExpr( type=argument_type(a.this.argument), expr=f'c10::impl::check_tensor_options_and_extract_memory_format({tensor_options.name}, {a.this.name})') ] else: return [DispatcherExpr(type=argument_type(a.this.argument), expr=a.this.name)] else: assert_never(a.this.argument) elif isinstance(a, CppTensorOptionsArgumentPack): if local.use_c10_dispatcher().dispatcher_uses_new_style(): # No-op return [ expr for sub_a in a.explicit_arguments() # NB: don't really care about explicitness here for expr in cppargument_exprs(CppSingleArgumentPack(sub_a), tensor_options=tensor_options) ] else: # Gather return [DispatcherExpr( type='const TensorOptions &', expr=f'TensorOptions().dtype({a.dtype.name}).layout({a.layout.name})' f'.device({a.device.name}).pinned_memory({a.pin_memory.name})', )] elif isinstance(a, CppThisArgumentPack): return [DispatcherExpr( type=a.type, expr='const_cast(*this)', )] else: assert_never(a) def cpparguments_exprs(args: Sequence[CppArgumentPack]) -> Sequence[DispatcherExpr]: tensor_options = next( (a.this for a in args if isinstance(a, CppSingleArgumentPack) and isinstance(a.this.argument, TensorOptionsArguments)), None ) return [r for a in args for r in cppargument_exprs(a, tensor_options=tensor_options)] # I don't think this is entirely sound, but it should be reasonably # close def nativearguments_exprs(args: Sequence[NativeArgument]) -> Sequence[DispatcherExpr]: return cpparguments_exprs([ CppSingleArgumentPack(CppArgument(type=a.type, name=a.name, default=None, argument=a.argument)) for a in args ]) def exprs(args: Sequence[DispatcherArgument]) -> Sequence[DispatcherExpr]: return cpparguments_exprs([ CppSingleArgumentPack(CppArgument(type=a.type, name=a.name, default=None, argument=a.argument)) for a in args ])