from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals ''' This module provides a python-land multithreaded data input mechanism for Caffe2 nets. Basic usage is as follows: coordinator = data_workers.init_data_input_workers( net, ["data", "label"], my_fetch_fun, batch_size=32, input_source_name="train" ) ... coordinator.start() First argument is the Caffe2 net (or model helper), and second argument is list of input blobs that are to be fed. Argument 'input_source_name' is used to distinguish different sources of data, such as train or test data. This is to ensure the data does not get mixed up, although two nets would share blobs. To do the actual data loading, one defines a "fetcher function" that has call signature my_fetch_fun(worker_id, batch_size) This function returns a list of numpy arrays corresponding to the different input blobs. In the example above, it would return two arrays, one for the data blob and another for the labels. These arrays can have arbitrary number of elements (i.e they do not need to match the batch size). The batch size is provided for the function as a hint only. For example, fetcher function could download images from a remote service or load random images from a directory on a file system. For a dummy example, see the data_workers_test unit test. Note that for data_parallel_models, init_data_input_workers will be called for each GPU. Note that the 'coordinator' returned by the function is same each time. ''' import Queue import logging import threading import atexit import numpy as np import time from caffe2.python import workspace, core, scope from caffe2.proto import caffe2_pb2 log = logging.getLogger("data_workers") log.setLevel(logging.INFO) def init_data_input_workers( net, input_blob_names, fetch_fun, batch_size, num_worker_threads=2, input_source_name="train", max_buffered_batches=100, ): global global_coordinator device_option = scope.CurrentDeviceScope() if (device_option is None): device_option = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CPU) # Create coordinator object coordinator = DataInputCoordinator( net, input_blob_names, batch_size, device_option, scope.CurrentNameScope(), input_source_name, max_buffered_batches, ) # Launch fetch worker threads workers = [ threading.Thread( target=fetcher, args=[coordinator, global_coordinator._fetcher_id_seq + i, fetch_fun, batch_size, input_blob_names], ) for i in range(num_worker_threads) ] global_coordinator._fetcher_id_seq += num_worker_threads workers.append(threading.Thread( target=enqueuer, args=[coordinator])) coordinator._workers = workers global_coordinator.add(coordinator) return global_coordinator class DataInputCoordinator(object): def __init__(self, net, input_blob_names, batch_size, device_option, namescope, input_source_name, max_buffered_batches): assert isinstance(max_buffered_batches, int) self._net = net self._counter = 0 self._input_blob_names = input_blob_names self._batch_size = batch_size self._internal_queue = Queue.Queue(maxsize=max_buffered_batches) self._queues = [] self._device_option = device_option self._namescope = namescope self._active = True self._started = False self._workers = [] self._input_source_name = input_source_name self._create_caffe2_queues_and_ops() self._inputs = 0 self._prev_seconds = 0 def is_active(self): return self._active def _start(self): if self._started: return self._active = True self._started = True self._inputs = 0 self._prev_seconds = time.time() for w in self._workers: w.daemon = True w.start() def _stop(self, reason=None): self._active = False if reason is not None: log.error("Data input failed due to an error: {}".format(reason)) for q in self._queues: workspace.RunOperatorOnce( core.CreateOperator("CloseBlobsQueue", [q], []) ) self._started = False def _wait_finish(self): log.info("Wait for workers to die") for w in self._workers: if w != threading.current_thread(): w.join(1.0) # don't wait forever, thread may be blocked in i/o for w in self._workers: if w.isAlive(): log.info("Worker {} failed to close while waiting".format(w)) return False return True def _get(self): while self.is_active(): try: return self._internal_queue.get(block=True, timeout=0.5) except Queue.Empty: continue return None def put(self, chunk): if len(chunk) == 0: log.warning("Worker provided zero length input") return while self.is_active(): try: qsize = self._internal_queue.qsize() if qsize < 2 and self._counter > 100: log.warn("Warning, data loading lagging behind: queue={} \ name=".format(qsize, self._input_source_name)) self._counter += 1 self._internal_queue.put(chunk, block=True, timeout=0.5) self._log_inputs_per_minute(chunk[0].shape[0]) return except Queue.Full: log.debug("Queue full: stalling fetchers...") continue def _enqueue_batch(self): ''' This pulls data from the python-side queue and collects them into batch-sized pieces. ''' cur_batch = [np.array([]) for d in self._input_blob_names] # Collect data until we have a full batch size while cur_batch[0].shape[0] < self._batch_size and self.is_active(): chunk = self._get() if chunk is None: continue for j, chunk_elem in enumerate(chunk): if cur_batch[j].shape[0] == 0: cur_batch[j] = chunk_elem.copy() else: cur_batch[j] = np.append(cur_batch[j], chunk_elem, axis=0) # Return data over the batch size back to queue if cur_batch[0].shape[0] > self._batch_size: leftover = [c[self._batch_size:] for c in cur_batch] cur_batch = [c[:self._batch_size] for c in cur_batch] try: self._internal_queue.put(leftover, block=False) except Queue.Full: pass assert cur_batch[0].shape[0] == self._batch_size if self.is_active(): for b, q, c in zip(self._input_blob_names, self._queues, cur_batch): self._enqueue(b, q, c) def _enqueue(self, blob_name, queue, data_arr): ''' Enqueue the correctly sized batch arrays to Caffe2's queue. ''' scratch_name = self._namescope + blob_name + \ "_scratch_" + self._input_source_name blob = core.BlobReference(scratch_name) workspace.FeedBlob( blob, data_arr, device_option=self._device_option ) op = core.CreateOperator( "EnqueueBlobs", [queue, blob], [blob], device_option=self._device_option ) workspace.RunOperatorOnce(op) def _create_caffe2_queues_and_ops(self): ''' Creates queues on caffe2 side, and respective operators to pull (dequeue) blobs from the queues. ''' def create_queue(queue_name, num_blobs, capacity): workspace.RunOperatorOnce( core.CreateOperator( "CreateBlobsQueue", [], [queue_name], num_blobs=1, capacity=capacity)) return core.ScopedBlobReference(queue_name) for blob_name in self._input_blob_names: qname = blob_name + "_c2queue" + "_" + self._input_source_name q = create_queue(qname, num_blobs=1, capacity=4) self._queues.append(q) log.info("Created queue: {}".format(q)) # Add operator to the Caffe2 network to dequeue self._net.DequeueBlobs(q, blob_name) def _log_inputs_per_minute(self, inputs): self._inputs += inputs current_seconds = time.time() delta_seconds = current_seconds - self._prev_seconds if delta_seconds >= 60: log.info("{}/{}: {} inputs/sec".format( self._input_source_name, self._namescope, self._inputs / delta_seconds, )) log.info("-- queue: {} batches".format(self._internal_queue.qsize())) self._inputs = 0 self._prev_seconds = current_seconds class GlobalCoordinator(object): def __init__(self): self._coordinators = [] self._fetcher_id_seq = 0 self.register_shutdown_handler() def add(self, coordinator): self._coordinators.append(coordinator) def start(self): for c in self._coordinators: c._start() def stop(self): all_success = True for c in self._coordinators: c._stop() for c in self._coordinators: success = c._wait_finish() all_success = all_success and success self._coordinators = [] return all_success def register_shutdown_handler(self): def cleanup(): self.stop() atexit.register(cleanup) global_coordinator = GlobalCoordinator() def fetcher(coordinator, worker_id, fetch_fun, batch_size, input_blob_names): while coordinator.is_active(): try: input_data = fetch_fun(worker_id, batch_size) if input_data is None: log.warn("Fetcher function returned None") continue assert len(input_data) == len(input_blob_names), \ "Expecting data blob for each input" for d in input_data: assert isinstance(d, np.ndarray), \ "Fetcher function must return a numpy array" for d in input_data[1:]: assert d.shape[0] == input_data[0].shape[0], \ "Each returned input must have equal number of samples" coordinator.put(input_data) except Exception as e: logging.exception("Exception in fetcher", e) coordinator._stop("Exception in fetcher {}: {}".format( worker_id, e )) def enqueuer(coordinator): while coordinator.is_active(): coordinator._enqueue_batch()