# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # @package optimizer # Module caffe2.python.optimizer from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core class Regularizer(object): def __init__(self): self.apply_after_optimizer = False ''' Adds regularization to train_net for given parameter. Its factor ahead of regularization is given when initialization. The param should be a BlobReference. ''' def __call__(self, net, param_init_net, param, grad=None): assert isinstance(param, core.BlobReference) return self._run(net, param_init_net, param) def _run(self, net, param_init_net, param): raise Exception("Not Impelemented") class L1Norm(Regularizer): def __init__(self, reg_lambda): super(L1Norm, self).__init__() assert reg_lambda >= 0,\ 'factor ahead of regularization should be 0 or positive' self.reg_lambda = reg_lambda def _run(self, net, param_init_net, param): output_blob = net.NextScopedBlob(param + '_l1_regularization') net.LpNorm([param], [output_blob], p=1) net.Scale([output_blob], [output_blob], scale=self.reg_lambda) return output_blob class L2Norm(Regularizer): def __init__(self, reg_lambda): super(L2Norm, self).__init__() assert reg_lambda >= 0,\ 'factor ahead of regularization should be 0 or positive' self.reg_lambda = reg_lambda def _run(self, net, param_init_net, param): output_blob = net.NextScopedBlob(param + '_l2_regularization') net.LpNorm([param], [output_blob], p=2) net.Scale([output_blob], [output_blob], scale=self.reg_lambda) return output_blob