#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FBCODE_CAFFE2 #include #include #endif namespace torch { namespace jit { // graph must be frozen or canEnableStaticRuntime would return false if there's // any prim::CallMethod op left in the graph bool canEnableStaticRuntime(const std::shared_ptr& graph) { // check for sub-blocks bool can_support = true; bool has_blocks = false; for (auto* node : graph->block()->nodes()) { if (node->blocks().size() > 0) { has_blocks = true; VLOG(1) << "Found nested sub-blocks in graph at node: " << PrintNode(node); } if (node->kind() == prim::Constant) { continue; } // check if can get op from Node const Operator* op = node->maybeOperator(); if (!op && !nativeOpIsRegistered(node->kind())) { can_support = false; LOG(WARNING) << "Found unsupported op: " << node->kind().toQualString(); } } if (has_blocks) { LOG(WARNING) << "Found nested sub-block in graph. Static Runtime doesn't support nested sub-blocks."; can_support = false; } return can_support; } namespace { void OptimizeGraph( std::shared_ptr& graph, const StaticModuleOptions& opts) { GRAPH_DUMP("Before optimizations: ", graph); Inline(*graph); ConstantPropagation(graph); Canonicalize(graph); ConstantPropagation(graph); RemoveTensorMutation(graph); ConstantPropagation(graph); EliminateDeadCode(graph); FuseInferenceOpsForSparseNN(graph); UseVariadicCat(graph); UseVariadicStack(graph); if (opts.enable_out_variant) { UseVariadicOp( graph, c10::Symbol::fromQualString("fb::sigrid_transforms_torch_bind"), c10::Symbol::fromQualString( "fb::variadic_sigrid_transforms_torch_bind"), 1 /* list_idx */); FuseSignLog1P(graph); // TODO: we can avoid this guard by moving operations // to exposed folders. #ifdef FBCODE_CAFFE2 ReplaceWithCopy(graph); FuseListUnpack(graph); EnableStaticRuntimeLayerNorm(graph); #endif } ConstantPropagation(graph); RemoveImmutableInputDictLookups(graph); UseVariadicTupleUnpack(graph); GRAPH_DUMP("Final graph after optimizations: ", graph); } // remove unused input 0 from graph bool RemoveSelfFromGraphInput(std::shared_ptr& graph) { if (graph->inputs().at(0)->type()->is_module()) { if (graph->inputs().at(0)->hasUses()) { return false; } graph->eraseInput(0); } return true; } // remove "self" from function schema c10::FunctionSchema RemoveSelfFromSchema(const c10::FunctionSchema& s) { TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self"); std::vector args({s.arguments().begin() + 1, s.arguments().end()}); return s.cloneWithArguments(args); } bool mayContainAlias(AliasDb& db, const Value* a, const Value* b) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) return db.mayContainAlias(const_cast(a), const_cast(b)); } bool mayContainAlias( AliasDb& db, const FastSet& a, const FastSet& b) { std::vector as; std::vector bs; as.reserve(a.size()); for (auto* v : a) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) as.emplace_back(const_cast(v)); } bs.reserve(b.size()); for (auto* v : b) { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) bs.emplace_back(const_cast(v)); } return db.mayContainAlias(as, bs); } // Map each value to all values that are alive at the same time. using LivenessMap = FastMap>; // The algorithm does a traversal of the execution graph // while keeping track of the live values. LivenessMap GetLivenessMap( const std::shared_ptr& graph, const ValueGroup& value_group, AliasDb& db) { // map a Value to a set of Values that overlap live-ranges with the Value's FastMap> liveness_map; // map Values to its creation order in graph (Note: only traverse top-level // nodes such that nodes under control-flows are represented by top-level // block nodes) std::vector values_in_creation_order; FastMap values_to_idx_in_creation_order; for (const auto* node : graph->nodes()) { values_to_idx_in_creation_order.reserve( values_to_idx_in_creation_order.size() + node->outputs().size()); for (const auto* v : node->outputs()) { values_to_idx_in_creation_order.emplace( v, values_in_creation_order.size()); values_in_creation_order.emplace_back(v); } } // presence of a Value in live_values_use_chain means the Value alive // Value mapped to set of Nodes that may use the Value (i.e., use-chain of // Value) FastMap> live_values_use_chain; // Node mapped to set of Values that the Node may use (i.e., def-chain of node // inputs) FastMap> live_nodes_def_chain; // add v to the current liveness_map std::function add_live_value_fn = [&](const Value* v) { if (liveness_map.count(v)) { return; } auto& v_live_set = liveness_map[v] = {}; v_live_set.reserve(live_values_use_chain.size()); for (const auto& live_v : live_values_use_chain) { v_live_set.insert(live_v.first); liveness_map.at(live_v.first).insert(v); } // only add values to the live set if they // have deps, otherwise they die immediately if (v->uses().size()) { live_values_use_chain[v] = FastSet(v->uses().size()); } // record the relationship between v (Value) and its uses (Node) for (const auto& u : v->uses()) { const auto* node = u.user; live_values_use_chain.at(v).insert(node); live_nodes_def_chain[node].insert(v); } // FIXME(penguin): the following alias refinement seems to assume // that `v` refers to a new tensor created by the node that defines // v, thus other Values "before" the node that defines `v` cannot // possibly be aliased to `v`. // TODO(penguin): Is it a limitation of TS alias analysis // so that we need to do such refinement? If so, better improve // alias analysis so that we dont need this special handling here // // Refine aliases of v by include only those created after v std::vector refined_aliases; auto idx = values_to_idx_in_creation_order[v]; for (; idx < values_in_creation_order.size(); ++idx) { auto* alias_v = values_in_creation_order[idx]; if (mayContainAlias(db, v, alias_v)) { refined_aliases.emplace_back(alias_v); } } // for all the values in the alias set, // we set them "alive" for (auto* aliased_v : refined_aliases) { add_live_value_fn(aliased_v); for (const auto& u : aliased_v->uses()) { const auto* node = u.user; // track deps of the aliased values is if they // are our own live_values_use_chain.at(v).insert(node); live_nodes_def_chain[node].insert(v); } } }; auto traverse_node_fn = [&](const Node* node, std::vector& dead) { if (live_nodes_def_chain.count(node)) { for (const auto* v : live_nodes_def_chain.at(node)) { live_values_use_chain.at(v).erase(node); if (!live_values_use_chain.at(v).size()) { dead.emplace_back(v); } } } }; for (const auto* node : graph->nodes()) { for (const auto* v : node->outputs()) { if (!value_group.isAlwaysAlive(v)) { add_live_value_fn(v); } } std::vector dead; traverse_node_fn(node, dead); for (const auto* dead_value : dead) { live_values_use_chain.erase(dead_value); } } for (const auto& v : live_values_use_chain) { TORCH_CHECK(value_group.isAlwaysAlive(v.first)); } for (const auto* node : graph->nodes()) { auto inputs = node->inputs(); auto outputs = node->outputs(); for (const auto* input : inputs) { for (const auto* output : outputs) { auto input_it = liveness_map.find(input); if (input_it == liveness_map.end()) { continue; } auto output_it = liveness_map.find(output); if (output_it == liveness_map.end()) { continue; } input_it->second.insert(output); output_it->second.insert(input); } } auto insert_all_pairs_in_liveness_map = [&](at::ArrayRef values) { for (size_t i = 0; !values.empty() && i < values.size() - 1; ++i) { auto value_it = liveness_map.find(values[i]); if (value_it == liveness_map.end()) { continue; } for (size_t j = i + 1; j < values.size(); ++j) { auto value2_it = liveness_map.find(values[j]); if (value2_it != liveness_map.end()) { value_it->second.insert(values[j]); value2_it->second.insert(values[i]); } } } }; // All inputs should be alive at the same time. insert_all_pairs_in_liveness_map(inputs); // All outputs should be alive at the same time. insert_all_pairs_in_liveness_map(outputs); }; return liveness_map; }; // Collect the set of Values that are candidates for memory planning: // - Values that are used in in-place operators (i.e., _out variants), and // - excluding those that are either inputs or outputs of // non in-place operators // // Returns // first: Values that are candidates for memory planning // second: A deterministc order of all values std::pair, std::vector> GetMemoryPlanningCandidates( const std::shared_ptr& graph, const FastMap& node_has_out_variant) { // for determinism FastSet seen_values; std::vector all_values; FastSet can_reuse; // values used by unsupported ops (as either inputs or outputs) // these need to be removed from "can_reuse" after analyzing all nodes FastSet cannot_reuse; for (auto* n : graph->nodes()) { bool can_reuse_inputs_outputs = canReuseInputsOutputs(n, node_has_out_variant); for (const auto* v : n->inputs()) { if (!seen_values.count(v)) { all_values.emplace_back(v); seen_values.insert(v); } if (can_reuse_inputs_outputs) { can_reuse.insert(v); } else { cannot_reuse.insert(v); } } for (const auto* v : n->outputs()) { all_values.emplace_back(v); seen_values.insert(v); if (can_reuse_inputs_outputs) { can_reuse.insert(v); } else { cannot_reuse.insert(v); } } } for (const auto* v : cannot_reuse) { can_reuse.erase(v); } // find a deterministic order std::vector optimizable; for (const auto* v : all_values) { if (can_reuse.count(v)) { optimizable.emplace_back(v); can_reuse.erase(v); } } return std::make_pair(optimizable, all_values); } // Equipped with a liveness map we can allocate memory to // ivalues, reusing memory along the way. However, we are // constrained by the set of optimizable_values // (inputs/outputs of out variants). Inputs/outputs of view ops // can't be reused. // // Algorithm: // # clusters of values sharing the same memory // # are called "value_to_same_storage_values" in the implementation // # inserting into a cluster denotes sharing memory. // // clusters = {} // for all v in optimzable_values: // for all cluster in clusters: # can we insert into cluster? // for all live_v in live_during(v): // if cluster.contains(live_v): // skip to next custer // cluster.add(v) // skip to next v // if no cluster found: // clusters.add(cluster{v}) // // // NB: This is a deterministic implementation, which makes it easier to tune // and debug. FastMap> GenerateSameStorageValues( const LivenessMap& alive_during, const ValueGroup& value_group, const std::pair, std::vector>& optimizable, AliasDb& db) { const auto& optimizable_values = optimizable.first; const auto& all_values = optimizable.second; // map Value* to a set Value* that can share the same storage with it FastMap> same_storage_values; // make new_v and old_v map to the same storage (i.e., add to each other's // same_storage_values set) auto share_storage_fn = [&](const Value* new_v, const Value* old_v) { if (new_v == old_v) { return; } DCHECK(same_storage_values.count(old_v)); FastSet seen; std::vector values; for (auto* v : same_storage_values.at(old_v)) { if (seen.count(v)) { continue; } seen.insert(v); values.emplace_back(v); } for (auto* v : same_storage_values.at(new_v)) { if (seen.count(v)) { continue; } seen.insert(v); values.emplace_back(v); } for (const auto* v : values) { same_storage_values[v] = values; } }; // initialize with known same_storage_values (aliasing values) for (const auto* v : all_values) { if (!same_storage_values.count(v)) { same_storage_values[v] = {v}; } // skip always alive values (alias inputs/outputs/weights) if (value_group.isAlwaysAlive(v)) { continue; } for (const auto& p : same_storage_values) { // NB: this means we cannot optimize operations that "sometimes alias" // TODO: add a more robust check of this behavior at runtime // FIXME (penguin): this handling makes v and MayAlias(v) share the // same storage, which is not correct. if (db.mayAlias(p.first, v)) { share_storage_fn(v, p.first); } } } // to preserve determinism std::vector seen; auto compute_liveset_fn = [&alive_during, &same_storage_values]( FastSet& live, const Value* v) { for (const auto* sv : same_storage_values.at(v)) { const auto& l = alive_during.count(sv) ? alive_during.at(sv) : FastSet{}; live.insert(l.begin(), l.end()); } }; // check if same_storage_values[s] intersects with live auto intersect_fn = [&same_storage_values]( FastSet& live, const Value* s) { bool intersect = false; for (const auto* v : same_storage_values.at(s)) { if (live.count(v)) { intersect = true; break; } } return intersect; }; for (const auto* v : optimizable_values) { if (value_group.isAlwaysAlive(v)) { continue; } // get values that are live during the lifetime of v FastSet live; compute_liveset_fn(live, v); for (const auto* s : seen) { // if live(same_storage_values[v]) and same_storage_values[s] // do not overlap, then s and v can share the same storage if (!intersect_fn(live, s) && !value_group.isAlwaysAlive(s)) { share_storage_fn(v, s); // since s is added to same_storage_values[v], live needs // to be recomputed, so bail out here break; } } seen.emplace_back(v); } return same_storage_values; } void PrepareGraphForStaticModule( std::shared_ptr graph, const StaticModuleOptions& opts) { TORCH_CHECK(canEnableStaticRuntime(graph)); OptimizeGraph(graph, opts); } std::pair, c10::optional> PrepareForStaticModule( const torch::jit::Module& m, bool is_frozen, const StaticModuleOptions& opts) { VLOG(1) << "StaticModuleOptions: cleanup_activations " << opts.cleanup_activations << ", enable_out_variant " << opts.enable_out_variant << ", optimize_memory" << opts.optimize_memory << ", optimize_graph_output_memory" << opts.optimize_graph_output_memory; Module module = m.copy(); if (!is_frozen) { module.eval(); module = freeze_module(module); } Method method = module.get_method("forward"); auto graph = module.get_method("forward").graph(); // graph->dump(); PrepareGraphForStaticModule(graph, opts); return std::make_pair(graph, module); } std::pair, c10::optional> PrepareForStaticModule( std::shared_ptr graph, const StaticModuleOptions& opts) { PrepareGraphForStaticModule(graph, opts); return std::make_pair(graph, c10::nullopt); } } // namespace void ValueGroup::init( const std::shared_ptr& graph, AliasDb& db) { input_or_constant_aliases_.clear(); output_aliases_.clear(); // Build `input_or_constant_aliases` as we look through nodes forwardly from // the graph's inputs and add aliases of the inputs being created by the // nodes. input_or_constant_aliases_.insert( graph->inputs().begin(), graph->inputs().end()); for (const auto* node : graph->nodes()) { if (node->kind() == prim::Constant) { for (const auto* output : node->outputs()) { input_or_constant_aliases_.insert(output); } } } for (const auto* node : graph->nodes()) { if (node->kind() == prim::Constant) { // Constants are already in `input_or_constant_aliases`. continue; } for (const auto* v : node->outputs()) { if (mayContainAlias(db, {v}, input_or_constant_aliases_)) { input_or_constant_aliases_.insert(v); } } } // Build `output_aliases` as we look through nodes reversely so that we can // start from the output values, and follow the flows backwardly from there. output_aliases_.insert(graph->outputs().begin(), graph->outputs().end()); for (const auto* node : graph->nodes().reverse()) { if (node->kind() == prim::Constant) { // Constants cannot create any aliases. continue; } for (const auto* v : node->outputs()) { if (mayContainAlias(db, {v}, output_aliases_) && !mayContainAlias(db, {v}, input_or_constant_aliases_)) { output_aliases_.insert(v); } } } } StaticModule::StaticModule( std::shared_ptr g, const StaticModuleOptions& opts) : StaticModule(PrepareForStaticModule(g->copy(), opts), opts) {} StaticModule::StaticModule( const torch::jit::Module& m, bool is_frozen, const StaticModuleOptions& opts) : StaticModule(PrepareForStaticModule(m, is_frozen, opts), opts) {} StaticModule::StaticModule( std::pair, c10::optional> graph_and_module, const StaticModuleOptions& opts) : opts_(opts), graph_(std::move(graph_and_module.first)), module_(std::move(graph_and_module.second)) { // check opt flags if (opts.optimize_graph_output_memory) { TORCH_CHECK( opts_.enable_out_variant && opts_.optimize_memory, "When optimize_graph_output_memory is true, enable_out_variant and optimize_memory must be set to true"); } if (opts_.optimize_memory) { TORCH_CHECK( opts_.enable_out_variant, "When optimize_memory is true, enable_out_variant must be set to true"); } // handle schema if (module_.has_value()) { Method method = module_->get_method("forward"); schema_ = method.function().getSchema(); if (RemoveSelfFromGraphInput(graph_)) { schema_ = RemoveSelfFromSchema(method.function().getSchema()); } else { first_input_is_self_ = true; schema_ = method.function().getSchema(); } } // map Value* to IValue (from inputs or prim::Constant) or null FastMap value_to_ivalue; // map Value* to its SSA definition IR FastMap value_to_ssa_def; // N inputs map to the first N entries in storage for (const auto i : c10::irange(graph_->inputs().size())) { Value* input = graph_->inputs()[i]; value_to_ivalue[input] = nullptr; value_to_ssa_def[input] = std::make_pair(INPUT_VALUE, i); } // NB: before optimizing the order of execution, ensure that the // memory optimization pass (LivenessMap) is // aware of the new order! // Fill constants first, so we have a std::vector we can reference // later for (Node* node : graph_->nodes()) { if (node->kind() != prim::Constant) { continue; } auto* v = node->output(); TORCH_CHECK(v->type()->kind() != FunctionType::Kind); constants_.emplace_back(toIValue(v).value()); } { // construct SSA definition for constant nodes int i = 0; for (Node* node : graph_->nodes()) { if (node->kind() != prim::Constant) { continue; } auto* v = node->output(); value_to_ssa_def[v] = std::make_pair(CONSTANT_VALUE, i); value_to_ivalue[v] = &(constants_[i++]); } } // construct SSA definition for non-constant nodes int node_idx = 0; FastMap node_has_out_variant; for (Node* node : graph_->nodes()) { if (node->kind() == prim::Constant) { continue; } std::vector ivalue_inputs; std::vector input_ssa_defs; for (Value* input : node->inputs()) { ivalue_inputs.emplace_back(value_to_ivalue.at(input)); input_ssa_defs.emplace_back(value_to_ssa_def.at(input)); } node_inputs_ssa_def_map_[node_idx] = input_ssa_defs; auto pnode = ProcessedNode(node, std::move(ivalue_inputs), opts.enable_out_variant); node_has_out_variant.emplace(node, pnode.has_out_variant()); nodes_.emplace_back(std::move(pnode)); for (const auto i : c10::irange(node->outputs().size())) { value_to_ivalue[node->outputs()[i]] = nullptr; value_to_ssa_def[node->outputs()[i]] = std::make_pair(node_idx, i); } node_idx++; } for (auto& pnode : nodes_) { if (pnode.outputs().size() == 1 && isOptimizableContainerType(pnode.node(), node_has_out_variant)) { node_is_optimizable_container_type_.emplace(pnode.node()); } } for (auto output : graph_->outputs()) { output_ssa_defs_.emplace_back(value_to_ssa_def[output]); } // Prepare for memory planning AliasDb alias_db( graph_, /*isFrozen=*/false, /*enablePreciseTupleContainerAnalysis=*/true); value_group_.init(graph_, alias_db); if (opts_.optimize_memory) { auto lm = GetLivenessMap(graph_, value_group_, alias_db); auto values = GetMemoryPlanningCandidates(graph_, node_has_out_variant); value_to_same_storage_values_ = GenerateSameStorageValues(lm, value_group_, values, alias_db); } } const StaticModuleOptions& StaticModule::opts() const { return opts_; } size_t StaticModule::num_outputs() const { return graph_->outputs().size(); } size_t StaticModule::num_inputs() const { return graph_->inputs().size(); } StaticRuntime& StaticModule::runtime() { if (!cached_runtime_) { cached_runtime_ = std::make_unique(*this); } return *cached_runtime_; } std::vector StaticModule::operator()( const std::vector& inps) { return runtime()(inps); } c10::IValue StaticModule::operator()( const std::vector& args, const std::unordered_map& kwargs) { return runtime()(args, kwargs); } StaticRuntime::StaticRuntime(const StaticModule& sm) : static_module_(sm) { // NB: create unchanging std::vectors we can reference inputs_.resize(sm.num_inputs()); nodes_.resize(sm.nodes().size()); for (const auto idx : c10::irange(sm.nodes().size())) { const auto& n_ref = sm.nodes()[idx]; nodes_[idx] = n_ref; // copy the node auto& n = nodes_[idx]; // hook up the inputs for (const auto i : c10::irange(n.inputs().size())) { if (n.inputs()[i] == nullptr) { int node_idx = 0; int out_idx = 0; std::tie(node_idx, out_idx) = sm.index_map().at(idx)[i]; DCHECK(out_idx >= 0); // input if (node_idx == StaticModule::INPUT_VALUE) { n.set_input(i, &inputs_[out_idx]); } else if (node_idx == StaticModule::CONSTANT_VALUE) { n.set_input(i, &sm.constants()[out_idx]); } else { DCHECK(node_idx >= 0); n.set_input(i, &(nodes_[node_idx].Output(out_idx))); } } } } for (const auto& index_pair : sm.output_indices()) { int node_idx = 0; int out_idx = 0; std::tie(node_idx, out_idx) = index_pair; if (node_idx == StaticModule::INPUT_VALUE) { outputs_.emplace_back(&inputs_[out_idx]); } else if (node_idx == StaticModule::CONSTANT_VALUE) { // This is a very rare case where const correctness // breaks -- the user is returning a constant from // the graph. // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) outputs_.emplace_back(const_cast(&sm.constants()[out_idx])); } else { auto* out = &nodes_[node_idx].Output(out_idx); outputs_.emplace_back(out); } } } StaticRuntime::~StaticRuntime() = default; std::vector StaticRuntime::operator()( const std::vector& inps) { std::vector stack; stack.resize(inps.size()); for (const auto i : c10::irange(inps.size())) { stack[i] = inps[i]; } c10::IValue v = (*this)(stack, std::unordered_map()); std::vector out; if (v.isTuple()) { auto t = v.toTuple(); for (const auto& el : t->elements()) { out.emplace_back(el.toTensor()); } } else { out.emplace_back(v.toTensor()); } return out; } void StaticRuntime::set_inputs( const std::vector& args, const std::unordered_map& kwargs) { if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( static_module_.schema(), "Schema is not available. Consider creating the Static Runtime " "with StaticModule(const torch::jit::Module& m) instead."); std::vector stack; stack.reserve(inputs_.size()); if (static_module_.first_input_is_self()) { stack.emplace_back(static_module_.module()._ivalue()); } stack.insert(stack.end(), args.begin(), args.end()); static_module_.schema()->checkAndNormalizeInputs(stack, kwargs); DCHECK_EQ(inputs_.size(), stack.size()); for (const auto i : c10::irange(stack.size())) { Input(i) = std::move(stack[i]); } } else { if (static_module_.first_input_is_self()) { Input(0) = static_module_.module()._ivalue(); DCHECK_EQ(inputs_.size(), args.size() + 1); for (const auto i : c10::irange(args.size())) { Input(i + 1) = args[i]; } } else { DCHECK_EQ(inputs_.size(), args.size()); for (const auto i : c10::irange(args.size())) { Input(i) = args[i]; } } } } c10::IValue StaticRuntime::operator()( const std::vector& args, const std::unordered_map& kwargs) { // We assume inference workloads, so we do not need // autograd. Enabling this is a significant win on dispatcher // overhead because it saves a round of dispatch for at least some // functions, such as resize_ and resize_as_. c10::InferenceMode mode; if (planner_) { planner_->allocate(); } set_inputs(args, kwargs); // NB: before optimizing the order of execution, ensure that the // memory optimization pass (LivenessMap) is // aware of the new order! for (auto& n : nodes_) { // LOG(INFO) << "Running node: " << PrintNode(n.node()); n.run(); } if (static_module_.opts().cleanup_activations) { // MemoryPlanner is created after the first invocation of `run()`. This is // done intentionally because MemoryPlanner uses `Tensor` sizes of the // previous `run()` for memory planning of subsequent runs if (!planner_) { planner_ = std::make_unique( this, static_module_.values_share_same_storage(), static_module_.value_group(), static_module_.opts().enable_out_variant, static_module_.opts().optimize_graph_output_memory); } planner_->deallocate(); // clean up owning refs of input tensors clean_up_input_ivalues(); } // no need to keep references of outputs in static runtime anymore if (static_module_.num_outputs() > 1) { std::vector outputs; outputs.reserve(static_module_.num_outputs()); for (const auto i : c10::irange(static_module_.num_outputs())) { // use move here. Otherwise, clean up outputs_[i] explicitly outputs.emplace_back(std::move(*outputs_[i])); } return c10::ivalue::Tuple::create(std::move(outputs)); } #ifndef NDEBUG check_for_memory_leak(false); #endif // use move here. Otherwise, clean up outputs_[0] explicitly return std::move(*outputs_[0]); } namespace { std::string generate_latency_json(const std::string& label, double millis) { #ifdef FBCODE_CAFFE2 folly::dynamic json = folly::dynamic::object(); json["type"] = label; json["metric"] = "latency"; json["unit"] = "ms"; json["value"] = millis; return "PyTorchObserver " + folly::toJson(json); #else return ""; #endif } } // namespace void StaticRuntime::benchmark( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs, bool print_per_node_time, bool generate_ai_pep_output) { float time_per_iter = benchmark_model(args, kwargs, warmup_runs, main_runs); std::cout << "Static runtime ms per iter: " << time_per_iter << ". Iters per second: " << 1000.0 / time_per_iter << std::endl; IndividualMetrics results = benchmark_individual_ops(args, kwargs, warmup_runs, main_runs); if (print_per_node_time) { for (const auto i : c10::irange(nodes_.size())) { const Node* node = nodes_[i].node(); std::cout << "Node #" << i << ": " << results.time_per_node[i] << " ms/iter, "; node->print(std::cout, 0, nullptr, false); } } std::vector> time_per_node_type_vec{ results.time_per_node_type.begin(), results.time_per_node_type.end()}; std::sort( time_per_node_type_vec.begin(), time_per_node_type_vec.end(), [](auto& left, auto& right) { return left.second > right.second; }); std::cout << "Time per node type:" << std::endl; for (const auto& p : time_per_node_type_vec) { const std::string& kind = p.first; const double ms = p.second; std::cout << std::setw(15) << ms << " ms. " << std::setw(10) << results.percent_per_node_type[kind] << "%. " << kind << " (" << results.instances_per_node_type[kind] << " nodes"; if (results.out_nodes.count(kind)) { std::cout << ", out variant)" << std::endl; } else if (results.native_nodes.count(kind)) { std::cout << ", native)" << std::endl; } else { std::cout << ")" << std::endl; } if (generate_ai_pep_output) { LOG(INFO) << generate_latency_json(kind, ms); } } if (generate_ai_pep_output) { LOG(INFO) << generate_latency_json( "static_runtime_first_iter", results.first_iter_time); } std::cout << std::setw(15) << results.total_time << " ms. in Total" << std::endl; std::cout << "StaticRuntime setup time: " << results.setup_time << " ms" << std::endl; std::cout << "Memory allocation time: " << results.memory_alloc_time << " ms\n"; std::cout << "Memory deallocation time: " << results.memory_dealloc_time << " ms" << std::endl; std::cout << "Outputs deallocation time: " << results.output_dealloc_time << " ms" << std::endl; std::cout << "First iter time: " << results.first_iter_time << " ms" << std::endl; if (planner_) { std::cout << "Total number of managed tensors: " << planner_->total_num_managed_tensors() << std::endl; std::cout << "Total number of unmanaged values: " << planner_->total_num_unmanaged() << std::endl; std::cout << "Total memory managed: " << planner_->total_managed() << " bytes" << std::endl; if (static_module_.opts().optimize_memory) { std::cout << "Total number of reused tensors: " << planner_->total_reused_tensors() << std::endl; } std::cout << "Total number of 'out' variant nodes/total number of nodes: " << results.out_nodes_count << "/" << results.total_nodes_count << " (" << 100.0 * (results.out_nodes_count) / static_cast(results.total_nodes_count) << "%)" << std::endl; } check_for_memory_leak(); #ifndef NDEBUG display_nodes(args, kwargs); #endif } float StaticRuntime::benchmark_model( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); for (const auto i : c10::irange(warmup_runs)) { (void)i; // Suppress unused variable warning operator()(args, kwargs); } caffe2::Timer timer; for (const auto i : c10::irange(main_runs)) { (void)i; // Suppress unused variable warning operator()(args, kwargs); } float millis = timer.MilliSeconds(); return millis / static_cast(main_runs); } bool display_ivalue(const IValue& iv) { if (iv.isTensor()) { std::cout << "Tensor " << iv.toTensor().toString() << " {"; for (const auto i : c10::irange(iv.toTensor().sizes().size())) { std::cout << iv.toTensor().sizes()[i]; if (iv.toTensor().sizes().size() > i + 1) { std::cout << ", "; } } std::cout << "}\n"; return true; } else if (iv.isTensorList()) { std::cout << "TensorList {" << iv.toTensorList().size() << "}\n"; return true; } else if (iv.isGenericDict()) { std::cout << "Dict {" << iv.toGenericDict().size() << "}\n"; return true; } else if (iv.isTuple()) { std::cout << "Tuple {" << iv.toTuple()->elements().size() << "}\n"; return true; } else if (iv.isInt()) { std::cout << "int {" << iv.toInt() << "}\n"; return true; } else if (iv.isBool()) { std::cout << "bool {" << iv.toBool() << "}\n"; return true; } else if (iv.isDouble()) { std::cout << "double {" << iv.toDouble() << "}\n"; return true; } return false; } void display_pnode_info(const ProcessedNode& pnode) { pnode.node()->print(std::cout, 0, nullptr, false); const std::vector& inputs = pnode.inputs(); for (const auto i : c10::irange(inputs.size())) { std::cout << "\ti" << i << ": "; if (!display_ivalue(*inputs[i])) { std::cout << *(pnode.node()->inputs()[i]->type()) << '\n'; } } const std::vector& outputs = pnode.outputs(); for (const auto i : c10::irange(outputs.size())) { std::cout << "\to" << i << ": "; if (!display_ivalue(outputs[i])) { std::cout << *(pnode.node()->outputs()[i]->type()) << '\n'; } } } void StaticRuntime::display_nodes( const std::vector& args, const std::unordered_map& kwargs) { c10::InferenceMode mode; if (planner_) { planner_->allocate(); } set_inputs(args, kwargs); for (auto& node : nodes_) { node.run(); display_pnode_info(node); } if (static_module_.opts().cleanup_activations) { // MemoryPlanner is created after the first invocation of `run()`. This is // done intentionally because MemoryPlanner uses `Tensor` sizes of the // previous `run()` for memory planning of subsequent runs if (!planner_) { planner_ = std::make_unique( this, static_module_.values_share_same_storage(), static_module_.value_group(), static_module_.opts().enable_out_variant, static_module_.opts().optimize_graph_output_memory); } planner_->deallocate(); // clean up owning refs of input tensors clean_up_input_ivalues(); } } StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 1 && main_runs >= 1); // See comment on above use of InferenceMode for // explanation. c10::InferenceMode mode; IndividualMetrics results; results.time_per_node.resize(nodes_.size(), 0); // setup time caffe2::Timer timer; set_inputs(args, kwargs); results.setup_time = timer.MilliSeconds(); // The first iteration profiles each node's output Tensors' sizes and // initializes the memory planner with the profile information. Folllowing // iterations just use the already established memory planning. timer.Start(); operator()(args, kwargs); results.first_iter_time = timer.MilliSeconds(); // warmup runs for (const auto i : c10::irange(warmup_runs - 1)) { (void)i; // Suppress unused variable warning operator()(args, kwargs); } // main runs for (const auto k : c10::irange(main_runs)) { (void)k; // Suppress unused variable warning set_inputs(args, kwargs); timer.Start(); if (planner_) { planner_->allocate(); } float millis = timer.MilliSeconds(); results.memory_alloc_time += millis; for (const auto i : c10::irange(nodes_.size())) { timer.Start(); nodes_[i].run(); millis = timer.MilliSeconds(); results.time_per_node[i] += millis; } timer.Start(); if (static_module_.opts().cleanup_activations) { if (!planner_) { planner_ = std::make_unique( this, static_module_.values_share_same_storage(), static_module_.value_group(), static_module_.opts().enable_out_variant, static_module_.opts().optimize_graph_output_memory); } planner_->deallocate(); // clean up owning refs of input tensors clean_up_input_ivalues(); } millis = timer.MilliSeconds(); results.memory_dealloc_time += millis; timer.Start(); // no need to keep references of outputs in static runtime anymore c10::IValue output; if (static_module_.num_outputs() > 1) { std::vector outputs; outputs.reserve(static_module_.num_outputs()); for (const auto i : c10::irange(static_module_.num_outputs())) { // use move here. Otherwise, clean up outputs_[i] explicitly outputs.emplace_back(std::move(*outputs_[i])); } output = c10::ivalue::Tuple::create(std::move(outputs)); } #ifndef NDEBUG check_for_memory_leak(false); #endif // use move here. Otherwise, clean up outputs_[0] explicitly output = std::move(*outputs_[0]); // release outputs explicitly to measure the time it takes output = IValue(); millis = timer.MilliSeconds(); results.output_dealloc_time += millis; } // post processing for (const auto i : c10::irange(nodes_.size())) { const Node* node = nodes_[i].node(); std::string kind = std::string(node->kind().toQualString()); results.time_per_node[i] /= static_cast(main_runs); results.time_per_node_type[kind] += results.time_per_node[i]; results.instances_per_node_type[kind]++; if (nodes_[i].has_out_variant()) { results.out_nodes.insert(kind); results.out_nodes_count++; } else if (nodes_[i].has_native()) { results.native_nodes.insert(kind); } results.total_time += results.time_per_node[i]; } results.total_nodes_count = nodes_.size(); results.memory_alloc_time /= static_cast(main_runs); results.memory_dealloc_time /= static_cast(main_runs); results.output_dealloc_time /= static_cast(main_runs); for (const auto& p : results.time_per_node_type) { const std::string& kind = p.first; results.percent_per_node_type[kind] = p.second / results.total_time * 100; } return results; } void StaticRuntime::check_for_memory_leak(bool output_returned) { if (!static_module_.opts().cleanup_activations) { return; } // check for inputs for (const auto i : c10::irange(inputs_.size())) { TORCH_CHECK(inputs_[i].isNone(), "Input ", i, " was not cleaned up"); } FastSet output_ivalues(outputs_.begin(), outputs_.end()); for (const auto n : c10::irange(nodes_.size())) { auto& pnode = nodes_[n]; for (const auto i : c10::irange(pnode.outputs().size())) { const IValue* ival = &pnode.Output(i); const Value* val = pnode.node()->output(i); const std::string error_msg = "Output " + c10::to_string(i) + ", %" + val->debugName() + " of node " + c10::to_string(n) + " was not cleaned up"; if (output_ivalues.count(ival) == 0) { // check for intermediates if (!ival->isNone()) { TORCH_CHECK( ival->isTensor() || static_module_.is_optimizable_container_type(pnode.node()), error_msg); if (ival->isTensor()) { const auto& t = ival->toTensor(); if (t.defined()) { auto* storage_impl = t.storage().unsafeGetStorageImpl(); TORCH_CHECK(storage_impl->data() == nullptr, error_msg); } } } } else { // check for outputs if (output_returned) { TORCH_CHECK(ival->isNone(), error_msg); } } } } VLOG(1) << "Finished checking for memory leak"; } ProcessedNode::ProcessedNode( Node* node, std::vector&& inputs, bool enable_out_variant) : node_(node), inputs_(std::move(inputs)), op_name_(node->kind().toQualString()) { // TODO leverage type information outputs_.resize(node->outputs().size()); if (enable_out_variant && (fn_ = getOutOfPlaceOperation(node))) { VLOG(1) << "Switch to out variant for node: " << PrintNode(node); return; } if (!fn_ && (native_fn_ = getNativeOperation(node))) { VLOG(1) << "Switch to native impl for node: " << PrintNode(node); return; } { const Operator& op = node->getOperator(); op_ = op.getOperation(node); VLOG(1) << "Fallback interpreter for node: " << PrintNode(node); } } std::vector ProcessedNode::clone_inputs() const { std::vector result; result.reserve(inputs_.size()); std::transform( inputs_.begin(), inputs_.end(), std::back_inserter(result), [](const IValue* ival) { return *ival; }); return result; } void ProcessedNode::run_impl() { DCHECK(verify_no_memory_overlap()); if (fn_) { fn_(this); } else if (native_fn_) { native_fn_(this); } else { std::vector stack; const size_t size = node_->inputs().size(); stack.reserve(size + 1); for (const auto i : c10::irange(size)) { stack.emplace_back(Input(i)); } // Need to store the number of inputs in stack for variadic ops. if (hasVarArgs(node_)) { stack.emplace_back(static_cast(size)); } DCHECK(op_); op_->operator()(stack); DCHECK_EQ(stack.size(), node_->outputs().size()); for (const auto i : c10::irange(node_->outputs().size())) { Output(i) = std::move(stack[i]); } } } void ProcessedNode::run() { #ifndef PYTORCH_DISABLE_PER_OP_PROFILING bool pre_sampled = false; if (C10_UNLIKELY(at::shouldRunRecordFunction(&pre_sampled))) { at::RecordFunction guard(at::RecordScope::FUNCTION, pre_sampled); if (guard.isActive()) { if (guard.needsInputs()) { guard.before(get_op_name(), clone_inputs()); } else { guard.before(get_op_name()); } } run_impl(); } else { run_impl(); } #else run_impl(); #endif } static bool checkNoMemoryOverlap(const at::Tensor& a, const at::Tensor& b) { at::MemOverlapStatus status = at::get_overlap_status(a, b); if (status == at::MemOverlapStatus::FULL || status == at::MemOverlapStatus::PARTIAL) { return false; } if (status == at::MemOverlapStatus::TOO_HARD) { LOG(WARNING) << "Detected TOO_HARD memory overlap status"; } return true; } bool ProcessedNode::verify_no_memory_overlap() const { for (size_t i = 0; i < outputs_.size(); ++i) { if (!outputs_[i].isTensor()) { continue; } const auto& out0_t = outputs_[i].toTensor(); for (size_t j = i + 1; j < outputs_.size(); ++j) { if (!outputs_[j].isTensor()) { continue; } const auto& out1_t = outputs_[j].toTensor(); if (!checkNoMemoryOverlap(out0_t, out1_t)) { return false; } } } auto schema = node()->maybeSchema(); if (!schema || schema->is_mutable()) { return true; } for (const IValue* in : inputs_) { if (!in->isTensor()) { continue; } const auto& in_t = in->toTensor(); for (const IValue& out : outputs_) { if (!out.isTensor()) { continue; } const auto& out_t = out.toTensor(); if (!checkNoMemoryOverlap(in_t, out_t)) { return false; } } } return true; } } // namespace jit } // namespace torch