# Owner(s): ["oncall: quantization"] import torch from torch.testing._internal.common_quantization import skipIfNoFBGEMM from torch.testing._internal.jit_utils import JitTestCase class TestDeprecatedJitQuantized(JitTestCase): @skipIfNoFBGEMM def test_rnn_cell_quantized(self): d_in, d_hid = 2, 2 for cell in [ torch.nn.LSTMCell(d_in, d_hid).float(), torch.nn.GRUCell(d_in, d_hid).float(), torch.nn.RNNCell(d_in, d_hid).float(), ]: if isinstance(cell, torch.nn.LSTMCell): num_chunks = 4 elif isinstance(cell, torch.nn.GRUCell): num_chunks = 3 elif isinstance(cell, torch.nn.RNNCell): num_chunks = 1 # Replace parameter values s.t. the range of values is exactly # 255, thus we will have 0 quantization error in the quantized # GEMM call. This i s for testing purposes. # # Note that the current implementation does not support # accumulation values outside of the range representable by a # 16 bit integer, instead resulting in a saturated value. We # must take care that in our test we do not end up with a dot # product that overflows the int16 range, e.g. # (255*127+255*127) = 64770. So, we hardcode the test values # here and ensure a mix of signedness. vals = [ [100, -155], [100, -155], [-155, 100], [-155, 100], [100, -155], [-155, 100], [-155, 100], [100, -155], ] vals = vals[: d_hid * num_chunks] cell.weight_ih = torch.nn.Parameter( torch.tensor(vals, dtype=torch.float), requires_grad=False ) cell.weight_hh = torch.nn.Parameter( torch.tensor(vals, dtype=torch.float), requires_grad=False ) with self.assertRaisesRegex( RuntimeError, "quantize_rnn_cell_modules function is no longer supported", ): cell = torch.jit.quantized.quantize_rnn_cell_modules(cell) @skipIfNoFBGEMM def test_rnn_quantized(self): d_in, d_hid = 2, 2 for cell in [ torch.nn.LSTM(d_in, d_hid).float(), torch.nn.GRU(d_in, d_hid).float(), ]: # Replace parameter values s.t. the range of values is exactly # 255, thus we will have 0 quantization error in the quantized # GEMM call. This i s for testing purposes. # # Note that the current implementation does not support # accumulation values outside of the range representable by a # 16 bit integer, instead resulting in a saturated value. We # must take care that in our test we do not end up with a dot # product that overflows the int16 range, e.g. # (255*127+255*127) = 64770. So, we hardcode the test values # here and ensure a mix of signedness. vals = [ [100, -155], [100, -155], [-155, 100], [-155, 100], [100, -155], [-155, 100], [-155, 100], [100, -155], ] if isinstance(cell, torch.nn.LSTM): num_chunks = 4 elif isinstance(cell, torch.nn.GRU): num_chunks = 3 vals = vals[: d_hid * num_chunks] cell.weight_ih_l0 = torch.nn.Parameter( torch.tensor(vals, dtype=torch.float), requires_grad=False ) cell.weight_hh_l0 = torch.nn.Parameter( torch.tensor(vals, dtype=torch.float), requires_grad=False ) with self.assertRaisesRegex( RuntimeError, "quantize_rnn_modules function is no longer supported" ): cell_int8 = torch.jit.quantized.quantize_rnn_modules( cell, dtype=torch.int8 ) with self.assertRaisesRegex( RuntimeError, "quantize_rnn_modules function is no longer supported" ): cell_fp16 = torch.jit.quantized.quantize_rnn_modules( cell, dtype=torch.float16 ) if "fbgemm" in torch.backends.quantized.supported_engines: def test_quantization_modules(self): K1, N1 = 2, 2 class FooBar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(K1, N1).float() def forward(self, x): x = self.linear1(x) return x fb = FooBar() fb.linear1.weight = torch.nn.Parameter( torch.tensor([[-150, 100], [100, -150]], dtype=torch.float), requires_grad=False, ) fb.linear1.bias = torch.nn.Parameter( torch.zeros_like(fb.linear1.bias), requires_grad=False ) x = (torch.rand(1, K1).float() - 0.5) / 10.0 value = torch.tensor([[100, -150]], dtype=torch.float) y_ref = fb(value) with self.assertRaisesRegex( RuntimeError, "quantize_linear_modules function is no longer supported" ): fb_int8 = torch.jit.quantized.quantize_linear_modules(fb) with self.assertRaisesRegex( RuntimeError, "quantize_linear_modules function is no longer supported" ): fb_fp16 = torch.jit.quantized.quantize_linear_modules(fb, torch.float16) @skipIfNoFBGEMM def test_erase_class_tensor_shapes(self): class Linear(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() qweight = torch._empty_affine_quantized( [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8, ) self._packed_weight = torch.ops.quantized.linear_prepack(qweight) @torch.jit.export def __getstate__(self): return ( torch.ops.quantized.linear_unpack(self._packed_weight)[0], self.training, ) def forward(self): return self._packed_weight @torch.jit.export def __setstate__(self, state): self._packed_weight = torch.ops.quantized.linear_prepack(state[0]) self.training = state[1] @property def weight(self): return torch.ops.quantized.linear_unpack(self._packed_weight)[0] @weight.setter def weight(self, w): self._packed_weight = torch.ops.quantized.linear_prepack(w) with torch._jit_internal._disable_emit_hooks(): x = torch.jit.script(Linear(10, 10)) torch._C._jit_pass_erase_shape_information(x.graph) if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_quantization.py TESTNAME\n\n" "instead." )