import copy import re import torch import torch.nn as nn from torch.ao.quantization import ( QConfigAny, QuantType, ) from torch.ao.quantization.backend_config import ( BackendConfig, DTypeWithConstraints, ) from torch.ao.quantization.fake_quantize import FakeQuantize from torch.ao.quantization.observer import ObserverBase from torch.ao.quantization.stubs import DeQuantStub from torch.ao.quantization.utils import ( activation_is_statically_quantized, is_per_tensor, is_per_channel, ) from torch.ao.quantization.quantize import is_activation_post_process from torch.fx import GraphModule, map_arg from torch.fx.graph import ( Graph, Node, ) from .custom_config import PrepareCustomConfig from typing import Callable, Optional, List, Dict, Any, Set, Tuple, Union, Type from collections import namedtuple import operator import warnings # TODO: revisit this list. Many helper methods shouldn't be public __all__ = [ "all_node_args_except_first", "all_node_args_have_no_tensors", "assert_and_get_unique_device", "collect_producer_nodes", "create_getattr_from_value", "create_node_from_old_node_preserve_meta", "create_qparam_nodes", "EMPTY_ARG_DICT", "get_custom_module_class_keys", "get_linear_prepack_op_for_dtype", "get_new_attr_name_with_prefix", "get_non_observable_arg_indexes_and_types", "get_per_tensor_qparams", "get_qconv_op", "get_qconv_prepack_op", "get_quantize_node_info", "get_skipped_module_name_and_classes", "graph_module_from_producer_nodes", "graph_pretty_str", "is_get_tensor_info_node", "maybe_get_next_module", "NodeInfo", "node_return_type_is_int", "node_arg_is_bias", "node_arg_is_weight", "NON_OBSERVABLE_ARG_DICT", "NON_QUANTIZABLE_WEIGHT_OPS", "quantize_node", "return_arg_list", ] NON_QUANTIZABLE_WEIGHT_OPS = {torch.nn.functional.layer_norm, torch.nn.functional.group_norm, torch.nn.functional.instance_norm} def node_arg_is_weight(node: Node, arg: Any, backend_config: BackendConfig) -> bool: """Returns if node arg is weight""" if isinstance(node, Node) and node.op == "call_function" and node.target in backend_config.configs: weight_index = backend_config.configs[node.target]._input_type_to_index.get("weight") if weight_index is not None and weight_index < len(node.args) and node.args[weight_index] is arg: return True return node.kwargs.get("weight") is arg return False def node_arg_is_bias(node: Node, arg: Any, backend_config: BackendConfig) -> bool: """Returns if node arg is bias""" if isinstance(node, Node) and node.op == "call_function" and node.target in backend_config.configs: bias_index = backend_config.configs[node.target]._input_type_to_index.get("bias") if bias_index is not None and bias_index < len(node.args) and node.args[bias_index] is arg: return True return node.kwargs.get("bias") is arg return False def graph_pretty_str(g, shorten=True) -> str: """Returns a printable representation of the ops in the graph of g. If shorten is True, tries to abbreviate fields. """ built_in_func_re = re.compile('') built_in_meth_re = re.compile('') op_dict = { 'placeholder': 'plchdr', 'get_attr': 'gt_prm', 'call_function': 'cl_fun', 'call_module': 'cl_mod', 'call_method': 'cl_meth', } max_lens = {} col_names = ("name", "op", "target", "args", "kwargs") for s in col_names: max_lens[s] = len(s) results = [] for n in g.nodes: # activation_post_process_0 -> obs_0 name = str(n.name) if shorten: name = name.replace("activation_post_process", "obs") op = str(n.op) # placeholder -> plchdr, and so on if shorten and op in op_dict: op = op_dict[op] target = str(n.target) # -> , and so on if shorten: built_in_func = built_in_func_re.search(target) if built_in_func: target = f"" built_in_meth = built_in_meth_re.search(target) if built_in_meth: target = f"" target = target.replace("activation_post_process", "obs") args = str(n.args) if shorten: args = args.replace("activation_post_process", "obs") kwargs = str(n.kwargs) # calculate maximum length of each column, so we can tabulate properly for k, v in zip(col_names, (name, op, target, args, kwargs)): max_lens[k] = max(max_lens[k], len(v)) results.append([name, op, target, args, kwargs]) res_str = "" format_str = "{:<{name}} {:<{op}} {:<{target}} {:<{args}} {:<{kwargs}}\n" res_str += format_str.format(*col_names, **max_lens) for result in results: res_str += format_str.format(*result, **max_lens) # print an exra note on abbreviations which change attribute names, # since users will have to un-abbreviate for further debugging if shorten: res_str += "*obs_{n} = activation_post_process_{n}\n" return res_str def get_per_tensor_qparams(activation_post_process): assert is_per_tensor(activation_post_process.qscheme), 'Only per tensor quantization is supported' scale, zero_point = activation_post_process.calculate_qparams() scale = float(scale) zero_point = int(zero_point) dtype = activation_post_process.dtype return scale, zero_point, dtype def get_quantize_node_info(activation_post_process: Callable) -> Optional[Tuple[str, Union[Callable, str], Dict[str, Any]]]: ''' Given an activation_post_process module, return node_type(e.g. call_function), quantize op(e.g. quantize_per_tensor) and a dictionary of extracted qparams from the module ''' dtype = activation_post_process.dtype # type: ignore[attr-defined] compute_dtype = None if hasattr(activation_post_process, "compute_dtype"): compute_dtype = activation_post_process.compute_dtype # type: ignore[attr-defined] quantize_op : Optional[Union[Callable, str]] = None if dtype in [torch.quint8, torch.qint8] and \ not hasattr(activation_post_process, 'compute_dtype'): node_type = "call_function" scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[attr-defined] if is_per_channel(activation_post_process.qscheme): # type: ignore[attr-defined] ch_axis = int(activation_post_process.ch_axis) # type: ignore[attr-defined] qparams = {"_scale_": scale, "_zero_point_": zero_point, "_axis_": ch_axis, "_dtype_": dtype} quantize_op = torch.quantize_per_channel else: scale = float(scale) zero_point = int(zero_point) qparams = {"_scale_": scale, "_zero_point_": zero_point, "_dtype_": dtype} quantize_op = torch.quantize_per_tensor elif compute_dtype in [torch.quint8, torch.qint8, torch.float16]: # TODO(future PR): switch compute_dtype to is_dynamic # dynamic quantization node_type = "call_function" quantize_op = torch.quantize_per_tensor_dynamic # TODO: get reduce range from observer # reduce_range = activation_post_process.reduce_range reduce_range = torch.backends.quantized.engine in ("fbgemm", "x86") qparams = {"_dtype_": compute_dtype, "_reduce_range_": reduce_range} elif dtype == torch.float16: node_type = "call_method" quantize_op = "to" qparams = {"_dtype_": dtype} else: warnings.warn(f"Unsupported activation_post_process in get_quantize_node_info: {activation_post_process}") return None return node_type, quantize_op, qparams def quantize_node( in_node: Node, obs_module: torch.nn.Module, obs_node: Node, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]], is_input: bool, output_prefix: str = "_output") -> Node: ''' Add quantization nodes (eg. quantize_per_tensor/per_channel) for given node to graph with the qparams calculated from activation_post_process (obs_module). The observer node (obs_node) is used to find the FQN of the user of act_post_process. e.g. Given input `node` in `node = self.conv(x)`, insert node: `quantized_node = torch.quantize_per_tensor(x, self._scale_0, self._zer_point_0, self._dtype_0)` where self._scale_0, self._zero_point_0 and self._dtype_0 are calculated from `obs_module` ''' # Find the first use of the observer node, we use this to get the scope of the module. if is_input: # if the quantize function is at the input of op, then we find the first user of the observer_node # to get the path. If a linear call_function is in the user list, we return the first instance # of linear node to get the FQN. users = list(obs_node.users) first_linear_use_or_first_use = users[0] if users else None linear_node = None for n in users: if n.op == "call_function" and n.target == torch.nn.functional.linear: linear_node = n break if linear_node: first_linear_use_or_first_use = linear_node prefix = "_input" else: # if the quantize function is at the output of the op, we use the observer input node to get the path first_linear_use_or_first_use = in_node prefix = output_prefix if first_linear_use_or_first_use and first_linear_use_or_first_use.name in node_name_to_scope: module_path, _ = node_name_to_scope[first_linear_use_or_first_use.name] else: # TODO: it's not used, so actually we can skip quantization # but this requires changing return type of quantize_node # we can fix it later if needed module_path = "" root_module = modules[''] graph = quantized_graph maybe_quantize_node_info = get_quantize_node_info(obs_module) assert maybe_quantize_node_info is not None, \ f"Expecting quantize node info not to be None, observer: {obs_module}" node_type, quantize_op, qparams = maybe_quantize_node_info inputs = [in_node] for key, value in qparams.items(): if key in ['_scale_', '_zero_point_']: # For scale and zero_point values we register them as buffers in the root module. qparam_node = create_getattr_from_value(root_module, graph, module_path + prefix + key, value) inputs.append(qparam_node) else: # for qparams that are not scale/zero_point (like axis, dtype) we store them as literals in the graph. inputs.append(value) return graph.create_node(node_type, quantize_op, tuple(inputs), {}) def get_custom_module_class_keys(custom_module_mapping: Dict[QuantType, Dict[Type, Type]]) -> List[Any]: r""" Get all the unique custom module keys in the custom config dict e.g. Input: { QuantType.STATIC: { CustomModule1: ObservedCustomModule }, QuantType.DYNAMIC: { CustomModule2: DynamicObservedCustomModule }, QuantType.WEIGHT_ONLY: { CustomModule3: WeightOnlyObservedCustomModule }, } Output: # extract the keys across all inner STATIC, DYNAMIC, and WEIGHT_ONLY dicts [CustomModule1, CustomModule2, CustomModule3] """ # using set to dedup float_custom_module_classes : Set[Any] = set() for quant_mode in [QuantType.STATIC, QuantType.DYNAMIC, QuantType.WEIGHT_ONLY]: quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {}) quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys()) float_custom_module_classes |= quant_mode_custom_module_classes return list(float_custom_module_classes) def get_linear_prepack_op_for_dtype(dtype): if dtype == torch.float16: return torch.ops.quantized.linear_prepack_fp16 elif dtype == torch.qint8: return torch.ops.quantized.linear_prepack else: raise Exception("can't get linear prepack op for dtype:", dtype) def get_qconv_prepack_op(conv_op: Callable) -> Callable: prepack_ops = { torch.nn.functional.conv1d: torch.ops.quantized.conv1d_prepack, torch.nn.functional.conv2d: torch.ops.quantized.conv2d_prepack, torch.nn.functional.conv3d: torch.ops.quantized.conv3d_prepack } prepack_op = prepack_ops.get(conv_op, None) assert prepack_op, "Didn't find prepack op for {}".format(conv_op) return prepack_op def get_qconv_op(conv_op: Callable, has_relu: bool) -> Callable: qconv_op = { # has relu True: { torch.nn.functional.conv1d: torch.ops.quantized.conv1d_relu, torch.nn.functional.conv2d: torch.ops.quantized.conv2d_relu, torch.nn.functional.conv3d: torch.ops.quantized.conv3d_relu }, False: { torch.nn.functional.conv1d: torch.ops.quantized.conv1d, torch.nn.functional.conv2d: torch.ops.quantized.conv2d, torch.nn.functional.conv3d: torch.ops.quantized.conv3d } } qconv = qconv_op[has_relu].get(conv_op) assert qconv, "Can't find corresponding quantized conv op for {} {}".format(conv_op, has_relu) return qconv # Returns a function that can get a new attribute name for module with given # prefix, for example, # >> get_new_observer_name = get_new_attr_name_with_prefix('_observer') # >> new_name = get_new_observer_name(module) # new_name will be an unused attribute name on module, e.g. `_observer_1` def get_new_attr_name_with_prefix(prefix: str) -> Callable: prefix = prefix.replace(".", "_") def get_new_attr_name(module: torch.nn.Module): def get_attr_name(i: int): return prefix + str(i) i = 0 attr_name = get_attr_name(i) while hasattr(module, attr_name): i += 1 attr_name = get_attr_name(i) return attr_name return get_new_attr_name def collect_producer_nodes(node: Node) -> Optional[List[Node]]: r''' Starting from a target node, trace back until we hit inpu or getattr node. This is used to extract the chain of operators starting from getattr to the target node, for example def forward(self, x): observed = self.observer(self.weight) return F.linear(x, observed) collect_producer_nodes(observed) will either return a list of nodes that produces the observed node or None if we can't extract a self contained graph without free variables(inputs of the forward function). ''' nodes = [node] frontier = [node] while frontier: node = frontier.pop() all_args = list(node.args) + list(node.kwargs.values()) for arg in all_args: if not isinstance(arg, Node): continue if arg.op == 'placeholder': # hit input, can't fold in this case return None nodes.append(arg) if not (arg.op == 'call_function' and arg.target == getattr): frontier.append(arg) return nodes def graph_module_from_producer_nodes( root: GraphModule, producer_nodes: List[Node]) -> GraphModule: r''' Construct a graph module from extracted producer nodes from `collect_producer_nodes` function Args: root: the root module for the original graph producer_nodes: a list of nodes we use to construct the graph Return: A graph module constructed from the producer nodes ''' assert len(producer_nodes) > 0, 'list of producer nodes can not be empty' # since we traced back from node to getattrr producer_nodes.reverse() graph = Graph() env: Dict[Any, Any] = {} def load_arg(a): return map_arg(a, lambda node: env[node]) for producer_node in producer_nodes: env[producer_node] = graph.node_copy(producer_node, load_arg) graph.output(load_arg(producer_nodes[-1])) graph_module = GraphModule(root, graph) return graph_module def assert_and_get_unique_device(module: torch.nn.Module) -> Any: """ Returns the unique device for a module, or None if no device is found. Throws an error if multiple devices are detected. """ devices = {p.device for p in module.parameters()} | \ {p.device for p in module.buffers()} assert len(devices) <= 1, ( "prepare only works with cpu or single-device CUDA modules, " "but got devices {}".format(devices) ) device = next(iter(devices)) if len(devices) > 0 else None return device def create_getattr_from_value(module: torch.nn.Module, graph: Graph, prefix: str, value: Any) -> Node: """ Given a value of any type, creates a getattr node corresponding to the value and registers the value as a buffer to the module. """ get_new_attr_name = get_new_attr_name_with_prefix(prefix) attr_name = get_new_attr_name(module) device = assert_and_get_unique_device(module) new_value = value.clone().detach() if isinstance(value, torch.Tensor) \ else torch.tensor(value, device=device) module.register_buffer(attr_name, new_value) # Create get_attr with value attr_node = graph.create_node("get_attr", attr_name) return attr_node def create_qparam_nodes( node_name: str, scale: Any, zero_point: Any, modules: Dict[str, torch.nn.Module], quantized_graph: Graph, node_name_to_scope: Dict[str, Tuple[str, type]] ) -> Tuple[Node, Node]: """ Create getattr nodes in the quantized graph for scale and zero point values. The nodes are registered with the root_module of the model. """ root_module = modules[''] module_path, _ = node_name_to_scope[node_name] scale_node = create_getattr_from_value(root_module, quantized_graph, (module_path + "_scale_"), scale) zero_point_node = create_getattr_from_value(root_module, quantized_graph, (module_path + "_zero_point_"), zero_point) return (scale_node, zero_point_node) def all_node_args_have_no_tensors(node: Node, modules: Dict[str, torch.nn.Module], cache: Dict[Node, bool]) -> bool: """ If we know for sure that all of this node's args have no tensors (are primitives), return True. If we either find a tensor or are not sure, return False. Note: this function is not exact. """ if cache and node in cache: return cache[node] result = False # will be overwritten if not isinstance(node, Node): result = True elif node.op == 'placeholder': result = False elif node.op == 'call_module': assert isinstance(node.target, str) if is_activation_post_process(modules[node.target]): result = all_node_args_have_no_tensors(node.args[0], modules, cache) # type: ignore[arg-type] elif node.op == 'call_module': result = False elif node.op == 'call_function' and node.target is operator.getitem: result = all_node_args_have_no_tensors(node.args[0], modules, cache) # type: ignore[arg-type] elif node.op == 'get_attr': result = False elif node.target is getattr and node.args[1] in ['ndim', 'shape']: # x1 = x0.ndim result = True elif node.op == 'call_method' and node.target == 'size': # x1 = x0.size(0) result = True else: found_one_tensor = False for arg in node.args: if isinstance(arg, list): for list_el in arg: if isinstance(list_el, Node): this_list_el_args_have_no_tensors = \ all_node_args_have_no_tensors(list_el, modules, cache) found_one_tensor = found_one_tensor or \ (not this_list_el_args_have_no_tensors) # If found_one_tensor is True, there is no point in # recursing further as the end result will always # be True. # TODO(future PR): remove this entire function and # change to dtype inference without recursion. if found_one_tensor: result = not found_one_tensor if cache: cache[node] = result return result elif isinstance(arg, int): pass else: if isinstance(arg, Node): this_arg_args_have_no_tensors = all_node_args_have_no_tensors(arg, modules, cache) found_one_tensor = found_one_tensor or \ (not this_arg_args_have_no_tensors) # If found_one_tensor is True, there is no point in # recursing further as the end result will always # be True. # TODO(future PR): remove this entire function and # change to dtype inference without recursion. if found_one_tensor: result = not found_one_tensor if cache: cache[node] = result return result else: found_one_tensor = True result = not found_one_tensor if cache: cache[node] = result return result def all_node_args_except_first(node: Node) -> List[int]: """ Returns all node arg indices after first """ return list(range(1, len(node.args))) def return_arg_list(arg_indices: List[int]) -> Callable[[Node], List[int]]: """ Constructs a function that takes a node as arg and returns the arg_indices that are valid for node.args """ def arg_indices_func(node: Node) -> List[int]: return [i for i in arg_indices if i < len(node.args)] return arg_indices_func NodeInfo = namedtuple("NodeInfo", "op target") # this dict identifies which indices of a node are non tensors # so that they can be propagated correctly since inserting observers # for them would cause errors NON_OBSERVABLE_ARG_DICT: Dict[NodeInfo, Dict[Union[type, torch.dtype], Callable[[Node], List[int]]]] = { NodeInfo("call_method", "masked_fill") : { torch.bool: return_arg_list([1]), float: return_arg_list([2]) }, NodeInfo("call_method", "permute") : { int: all_node_args_except_first }, NodeInfo("call_method", "repeat") : { int: all_node_args_except_first }, NodeInfo("call_method", "reshape") : { int: all_node_args_except_first }, NodeInfo("call_method", "size") : { int: return_arg_list([1]) }, NodeInfo("call_method", "transpose") : { int: all_node_args_except_first }, NodeInfo("call_method", torch.transpose) : { int: all_node_args_except_first }, NodeInfo("call_method", "unsqueeze") : { int: return_arg_list([1]) }, NodeInfo("call_method", "unsqueeze_") : { int: return_arg_list([1]) }, NodeInfo("call_method", torch.unsqueeze) : { int: return_arg_list([1]) }, NodeInfo("call_method", "view") : { int: all_node_args_except_first }, } EMPTY_ARG_DICT: Dict[Union[type, torch.dtype], Callable[[Node], List[int]]] = {} def get_non_observable_arg_indexes_and_types(node: Node) -> Dict[Union[type, torch.dtype], Callable[[Node], List[int]]]: """ Returns a dict with of non float tensor types as keys and values which correspond to a function to retrieve the list (which takes the node as an argument) """ info = NodeInfo(node.op, node.target) return NON_OBSERVABLE_ARG_DICT.get(info, EMPTY_ARG_DICT) def node_return_type_is_int(node: Node) -> bool: """ Returns true if this node results in an integer, even if some of the args are Tensors. """ return node.op == 'call_method' and node.target == 'size' def is_get_tensor_info_node(node: Node) -> bool: """ Returns True if this node is a node that takes a Tensor as input and output some meta information about the Tensor, e.g. shape, size etc. """ result: bool = \ node.op == "call_function" and node.target == getattr and node.args[1] == "shape" # type: ignore[assignment] return result def maybe_get_next_module( node: Node, modules: Dict[str, nn.Module], target_module_type: Optional[Type[nn.Module]] = None, target_functional_type: Any = None, ) -> Optional[Node]: """ Gets the next module that matches what is needed in is_target_module_type if it exists Args: node: The node whose users we want to look at target_module_type: Module type that we want to check target_functional_type: Functional type that we want to check """ for user, _ in node.users.items(): if user.op == 'call_module' and target_module_type is not None and \ isinstance(modules[str(user.target)], target_module_type): return user elif (user.op == 'call_function' and target_functional_type is not None and user.target == target_functional_type): return user return None def create_node_from_old_node_preserve_meta( quantized_graph: Graph, create_node_args: Tuple[Any, ...], old_node: Node, ) -> Node: """ Creates `new_node` and copies the necessary metadata to it from `old_node`. """ new_node = quantized_graph.create_node(*create_node_args) new_node.stack_trace = old_node.stack_trace return new_node def get_skipped_module_name_and_classes( prepare_custom_config: PrepareCustomConfig, is_standalone_module: bool) -> Tuple[List[str], List[Type[Any]]]: skipped_module_names = copy.copy(prepare_custom_config.non_traceable_module_names) skipped_module_classes = copy.copy(prepare_custom_config.non_traceable_module_classes) if not is_standalone_module: # standalone module and custom module config are applied in top level module skipped_module_names += list(prepare_custom_config.standalone_module_names.keys()) skipped_module_classes += list(prepare_custom_config.standalone_module_classes.keys()) skipped_module_classes += get_custom_module_class_keys(prepare_custom_config.float_to_observed_mapping) return skipped_module_names, skipped_module_classes def _is_custom_module_lstm( node: Node, named_modules: Dict[str, torch.nn.Module], qconfig: QConfigAny = None, # QuantizeHandler, but we cannot include the type here due to circular imports qhandler: Optional[Any] = None, ) -> bool: """ Return whether this refers to the custom module LSTM flow. """ mod = _get_module(node, named_modules) if qconfig is not None and qhandler is not None: assert isinstance(qhandler, torch.ao.quantization.fx.quantization_patterns.QuantizeHandler) # type: ignore[attr-defined] return isinstance(mod, torch.nn.LSTM) and \ activation_is_statically_quantized(qconfig) and \ qhandler.is_custom_module() else: return isinstance(mod, torch.ao.nn.quantizable.LSTM) def _get_module(node: Node, named_modules: Dict[str, torch.nn.Module]) -> Optional[torch.nn.Module]: """ If `node` refers to a call_module node, return the module, else None. """ if node.op == "call_module" and str(node.target) in named_modules: return named_modules[str(node.target)] else: return None def _insert_dequant_stub( node: Node, model: torch.nn.Module, named_modules: Dict[str, torch.nn.Module], graph: Graph, ) -> Node: """ Attach a `DeQuantStub` to the model and create a node that calls this `DeQuantStub` on the output of `node`, similar to how observers are inserted. """ prefix = "dequant_stub_" get_new_dequant_stub_name = get_new_attr_name_with_prefix(prefix) dequant_stub_name = get_new_dequant_stub_name(model) dequant_stub = DeQuantStub() setattr(model, dequant_stub_name, dequant_stub) named_modules[dequant_stub_name] = dequant_stub with graph.inserting_after(node): return graph.call_module(dequant_stub_name, (node,)) def _insert_dequant_stubs_for_custom_module_lstm_output( node: Node, model: torch.nn.Module, named_modules: Dict[str, torch.nn.Module], graph: Graph, ) -> Node: """ Insert DeQuantStubs after each internal output node of custom module LSTM. Custom module LSTM outputs are nested tuples of the sturcture (output, (hidden0, hidden1)), Since we cannot dequantize a tuple as a whole, we must first break down the tuple into its components through `getitem`. This function transforms the graph as follows: (1) Split the LSTM node into (output, (hidden0, hidden1)) (2) Insert a DeQuantStub after each internal node (3) Recombine the DeQuantStubs into the same structure as before (4) Reroute all consumers of the original LSTM node and its sub-nodes (e.g. lstm[0]) Before: lstm_output | v original_user(s) After: lstm_output / \\ / (getitem) \\ / \\ v v output hidden | / \\ (DeQuantStub) (getitem) | / \\ v v v output_dq hidden0 hidden1 | | | | (DeQuantStub) (DeQuantStub) | | | | v v | hidden0_dq hidden1_dq | \\ / | (tuple) | \\ / | v v | hidden_dq \\ / \\ (tuple) / v v lstm_output_dq | v original_user(s) For step (4), reroute all users of the original LSTM node(s) as follows: lstm_output -> lstm_output_dq lstm_output[0] -> output_dq lstm_output[1] -> hidden_dq lstm_output[1][0] -> hidden0_dq lstm_output[1][1] -> hidden1_dq Return the node `lstm_output_dq`. """ # (1) Split the LSTM node into (output, (hidden0, hidden1)) # (2) Insert a DeQuantStub after each internal node with graph.inserting_after(node): output = graph.call_function(operator.getitem, (node, 0)) output_dq = _insert_dequant_stub(output, model, named_modules, graph) with graph.inserting_after(output_dq): hidden = graph.call_function(operator.getitem, (node, 1)) with graph.inserting_after(hidden): hidden0 = graph.call_function(operator.getitem, (hidden, 0)) hidden0_dq = _insert_dequant_stub(hidden0, model, named_modules, graph) with graph.inserting_after(hidden0_dq): hidden1 = graph.call_function(operator.getitem, (hidden, 1)) hidden1_dq = _insert_dequant_stub(hidden1, model, named_modules, graph) # (3) Recombine the DeQuantStubs into the same structure as before with graph.inserting_after(hidden1_dq): hidden_dq = graph.call_function(tuple, ([hidden0_dq, hidden1_dq],)) with graph.inserting_after(hidden_dq): lstm_output_dq = graph.call_function(tuple, ([output_dq, hidden_dq],)) # (4) Reroute all consumers of the original LSTM node and its sub-nodes for user in list(node.users.keys()): if user != output and user != hidden: user.replace_input_with(node, lstm_output_dq) # The getitem and tuple nodes we added here may interfere with reference quantized # pattern matching, so we need to redirect the consumers of internal nodes to the # corresponding nodes with DeQuantStubs (e.g. lstm_output_dq[0] -> output_dq) attached, # in order to preserve reference patterns like "dequantize - consumer - quantize". _reroute_tuple_getitem_pattern(graph) return lstm_output_dq def _maybe_get_custom_module_lstm_from_node_arg( arg: Node, named_modules: Dict[str, torch.nn.Module], ) -> Optional[Node]: """ Given an argument of a node, if the argument refers to the path through which the node is a consumer of custom module LSTM, return the custom module LSTM node, or None otherwise. This is used to determine whether a node is a consumer of custom module LSTM, and, if so, skip inserting input observers for this node. This is because custom module LSTM produces quantized outputs, so inserting an input observer for the consumer of custom module LSTM would unnecessarily quantize the outputs again. lstm -> consumer In practice, however, custom module LSTM outputs a tuple (output, (hidden0, hidden1)) with DeQuantStubs attached to each internal node (see `_insert_dequant_stubs_for_custom_module_lstm_output`). This tuple can be consumed in one of four ways: lstm -> getitem -> DeQuantStub -> consumer # consume lstm[0] lstm -> getitem -> getitem -> DeQuantStub -> tuple -> consumer # consume lstm[1] lstm -> getitem -> getitem -> DeQuantStub -> consumer # consume lstm[1][0] or lstm[1][1] lstm -> getitem -> DeQuantStub -> tuple -> consumer # consume lstm Thus, we must match against the above patterns instead of simply checking the parent node to determine whether this node is a consumer of a custom module LSTM. """ def match_dq(a): return isinstance(_get_module(a, named_modules), DeQuantStub) def match_lstm(a): return _is_custom_module_lstm(a, named_modules) def match_getitem(a): return a.op == "call_function" and a.target == operator.getitem def match_tuple(a): return a.op == "call_function" and a.target == tuple def _match_pattern(match_pattern: List[Callable]) -> Optional[Node]: """ Traverse up the graph and match the args one by one. If there is a match, return the last matched node, or None otherwise. """ a = arg for i, match in enumerate(match_pattern): if not match(a): return None # Match next arg, for tuple the arg is a tuple of a list, e.g. ([dq_1, other_node],) if i < len(match_pattern) - 1: if match == match_tuple: a = a.args[0][0] # type: ignore[assignment,index] else: a = a.args[0] # type: ignore[assignment] return a all_match_patterns = [ [match_dq, match_getitem, match_lstm], [match_tuple, match_dq, match_getitem, match_getitem, match_lstm], [match_dq, match_getitem, match_getitem, match_lstm], [match_tuple, match_dq, match_getitem, match_lstm], ] for p in all_match_patterns: matched_node = _match_pattern(p) if matched_node is not None: return matched_node return None def _reroute_tuple_getitem_pattern(graph: Graph): """ Search for patterns where N consecutive `tuple` call_function nodes are followed by N consecutive `getitem` call_function nodes that are "reverses" of the `tuple` nodes. If we find this pattern, reroute the consumers of the last `getitem` to skip these N `tuple` and `getitem` nodes. Before: a b c | \\ / \\ tuple \\ / tuple | getitem(1) | getitem(0) | d After: b | d """ def find_patterns( node: Node, index_stack: List[int], current_pattern: List[Node], matched_patterns: List[List[Node]], seen: Set[Tuple[Node, Tuple[int, ...]]]): """ Traverse the graph recursively to match for the N-tuple - N-getitem patterns, starting at the given node. We use a stack to keep track of the expected `getitem` indices, since these are reversed from the `tuple` indices. In the above example, the stack after (b -> tuple -> tuple) will be [0, 1], which will be popped by getitem(1) first and then by getitem(0). TODO: traverse upwards from the output and handle the case when tuple is not a separate node, e.g. graph.call_function(operator.getitem, args=(a, (b, c))) """ if len(index_stack) == 0 and len(current_pattern) > 0: matched_patterns.append(copy.copy(current_pattern)) current_pattern.clear() # Avoid duplicating work state = (node, tuple(index_stack)) if state in seen: return seen.add(state) # Iterate through users of this node to find tuple/getitem nodes to match for user in node.users: if user.op == "call_function" and user.target == tuple: for i, user_arg in enumerate(user.args[0]): # type: ignore[arg-type] if user_arg == node: index_stack.append(i) current_pattern.append(user) find_patterns(user, index_stack, current_pattern, matched_patterns, seen) elif user.op == "call_function" and user.target == operator.getitem: if len(index_stack) > 0: if user.args[1] == index_stack[-1]: index_stack.pop() current_pattern.append(user) find_patterns(user, index_stack, current_pattern, matched_patterns, seen) return matched_patterns # Collect all matched patterns matched_patterns: List[List[Node]] = [] seen: Set[Tuple[Node, Tuple[int, ...]]] = set() # (node, index_stack) for node in graph.nodes: find_patterns(node, [], [], matched_patterns, seen) # For each pattern, redirect all consumers of the last getitem node to the correct input # of the first tuple node for pattern in matched_patterns: first_tuple = pattern[0] last_getitem = pattern[-1] assert first_tuple.op == "call_function" and first_tuple.target == tuple assert last_getitem.op == "call_function" and last_getitem.target == operator.getitem last_getitem_index = last_getitem.args[1] new_input = first_tuple.args[0][last_getitem_index] # type: ignore[index] for user in list(last_getitem.users.keys()): user.replace_input_with(last_getitem, new_input) def _qconfig_satisfies_dtype_config_constraints( qconfig: QConfigAny, dtype_with_constraints: DTypeWithConstraints, is_activation: bool = True) -> bool: """ Return whether `qconfig` satisfies the following constraints from the backend, specified through the activation and weight DTypeWithConstraints. 1. QConfig specified a quantization range that falls within the backend's, if any 2. QConfig specified a min scale value that is >= the backend's, if any If `is_activation` is True, we check `qconfig.activation`, else we check `qconfig.weight`. If `qconfig` or `dtype_with_constraints.dtype` is None, or the dtypes do not match, return True. """ def _activation_post_process_satisfies_dtype_config_constraints( activation_post_process: Union[ObserverBase, FakeQuantize], dtype_with_constraints: DTypeWithConstraints, debug_string: str) -> bool: app_quant_min = getattr(activation_post_process, "quant_min", None) app_quant_max = getattr(activation_post_process, "quant_max", None) # TODO: for now, just use the existing eps value as scale_min. In the future, we should # resolve the differences between the two, either by renaming eps or some other way app_scale_min = getattr(activation_post_process, "eps", None) backend_quant_min = dtype_with_constraints.quant_min_lower_bound backend_quant_max = dtype_with_constraints.quant_max_upper_bound backend_scale_min = dtype_with_constraints.scale_min_lower_bound # check quantization ranges if backend_quant_min is not None and backend_quant_max is not None: if app_quant_min is None or app_quant_max is None: warnings.warn("QConfig %s must specify 'quant_min' and 'quant_max', ignoring %s" % (debug_string, qconfig)) return False elif app_quant_min < backend_quant_min or app_quant_max > backend_quant_max: warnings.warn(("QConfig %s quantization range must fall within the backend's:\n" "QConfig range = (%s, %s), BackendConfig range = (%s, %s), ignoring %s") % (debug_string, app_quant_min, app_quant_max, backend_quant_min, backend_quant_max, qconfig)) return False # check scale min if backend_scale_min is not None: if app_scale_min is None: warnings.warn("QConfig %s must specify 'eps', ignoring %s" % (debug_string, qconfig)) return False elif app_scale_min < backend_scale_min: warnings.warn(("QConfig %s eps (%s) must be greater than or equal to " "the backend's min scale value (%s), ignoring %s") % (debug_string, app_scale_min, backend_scale_min, qconfig)) return False return True if qconfig is None or dtype_with_constraints.dtype is None: return True activation_post_process_ctr = qconfig.activation if is_activation else qconfig.weight debug_string = "activation" if is_activation else "weight" satisfies_constraints = True if activation_post_process_ctr is not None: activation_post_process = activation_post_process_ctr() assert is_activation_post_process(activation_post_process) # If dtypes don't match, don't check the activation_post_process and return True early if activation_post_process.dtype != dtype_with_constraints.dtype: return True satisfies_constraints = _activation_post_process_satisfies_dtype_config_constraints( activation_post_process, dtype_with_constraints, debug_string) return satisfies_constraints