"""This module exists since the `torch.testing` exposed a lot of stuff that shouldn't have been public. Although this was never documented anywhere, some other internal FB projects as well as downstream OSS projects might use this. Thus, we don't internalize without warning, but still go through a deprecation cycle. """ import functools import warnings from typing import Any, Callable, Dict, Optional, Tuple, Union import torch from . import _legacy __all__ = [ "rand", "randn", "assert_allclose", "get_all_device_types", ] def warn_deprecated(instructions: Union[str, Callable[[str, Tuple[Any, ...], Dict[str, Any], Any], str]]) -> Callable: def outer_wrapper(fn: Callable) -> Callable: name = fn.__name__ head = f"torch.testing.{name}() is deprecated and will be removed in a future release. " @functools.wraps(fn) def inner_wrapper(*args: Any, **kwargs: Any) -> Any: return_value = fn(*args, **kwargs) tail = instructions(name, args, kwargs, return_value) if callable(instructions) else instructions msg = (head + tail).strip() warnings.warn(msg, FutureWarning) return return_value return inner_wrapper return outer_wrapper rand = warn_deprecated("Use torch.rand instead.")(torch.rand) randn = warn_deprecated("Use torch.randn instead.")(torch.randn) _DTYPE_PRECISIONS = { torch.float16: (1e-3, 1e-3), torch.float32: (1e-4, 1e-5), torch.float64: (1e-5, 1e-8), } def _get_default_rtol_and_atol(actual: torch.Tensor, expected: torch.Tensor) -> Tuple[float, float]: actual_rtol, actual_atol = _DTYPE_PRECISIONS.get(actual.dtype, (0.0, 0.0)) expected_rtol, expected_atol = _DTYPE_PRECISIONS.get(expected.dtype, (0.0, 0.0)) return max(actual_rtol, expected_rtol), max(actual_atol, expected_atol) # TODO: include the deprecation as soon as torch.testing.assert_close is stable # @warn_deprecated( # "Use torch.testing.assert_close instead. " # "For detailed upgrade instructions see https://github.com/pytorch/pytorch/issues/61844." # ) def assert_allclose( actual: Any, expected: Any, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan: bool = True, msg: str = "", ) -> None: if not isinstance(actual, torch.Tensor): actual = torch.tensor(actual) if not isinstance(expected, torch.Tensor): expected = torch.tensor(expected, dtype=actual.dtype) if rtol is None and atol is None: rtol, atol = _get_default_rtol_and_atol(actual, expected) torch.testing.assert_close( actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan, check_device=True, check_dtype=False, check_stride=False, msg=msg or None, ) # We iterate over all dtype getters and expose them here with an added deprecation warning for name in _legacy.__all_dtype_getters__: fn = getattr(_legacy, name) instructions = ( lambda name, args, kwargs, return_value: f"This call to {name}(...) can be replaced with {return_value}." ) globals()[name] = warn_deprecated(instructions)(fn) __all__.append(name) instructions = lambda name, args, kwargs, return_value: f"This call can be replaced with {return_value}." # noqa: E731 get_all_device_types = warn_deprecated(instructions)(_legacy.get_all_device_types)