import unittest import torch from caffe2.python import core, workspace # This is a standalone test that doesn't use test_util as we're testing # initialization and thus we should be the ones calling GlobalInit @unittest.skipIf(not workspace.has_cuda_support, "THC pool testing is obscure and doesn't work on HIP yet") class TestGPUInit(unittest.TestCase): def testTHCAllocator(self): cuda_or_hip = 'hip' if workspace.has_hip_support else 'cuda' flag = '--caffe2_{}_memory_pool=thc'.format(cuda_or_hip) core.GlobalInit(['caffe2', flag]) # just run one operator # it's importantant to not call anything here from Torch API # even torch.cuda.memory_allocated would initialize CUDA context workspace.RunOperatorOnce(core.CreateOperator( 'ConstantFill', [], ["x"], shape=[5, 5], value=1.0, device_option=core.DeviceOption(workspace.GpuDeviceType) )) # make sure we actually used THC allocator self.assertGreater(torch.cuda.memory_allocated(), 0) if __name__ == '__main__': unittest.main()