from caffe2.python import workspace, scope from caffe2.python.model_helper import ModelHelper import numpy as np def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def tanh(x): return 2.0 * sigmoid(2.0 * x) - 1 def _prepare_rnn( t, n, dim_in, create_rnn, outputs_with_grads, forget_bias, memory_optim=False, forward_only=False, drop_states=False, T=None, two_d_initial_states=None, dim_out=None, num_states=2, **kwargs ): if dim_out is None: dim_out = [dim_in] print("Dims: ", t, n, dim_in, dim_out) model = ModelHelper(name='external') if two_d_initial_states is None: two_d_initial_states = np.random.randint(2) def generate_input_state(n, d): if two_d_initial_states: return np.random.randn(n, d).astype(np.float32) else: return np.random.randn(1, n, d).astype(np.float32) states = [] for layer_id, d in enumerate(dim_out): for i in range(num_states): state_name = "state_{}/layer_{}".format(i, layer_id) states.append(model.net.AddExternalInput(state_name)) workspace.FeedBlob( states[-1], generate_input_state(n, d).astype(np.float32)) # Due to convoluted RNN scoping logic we make sure that things # work from a namescope with scope.NameScope("test_name_scope"): input_blob, seq_lengths = model.net.AddScopedExternalInputs( 'input_blob', 'seq_lengths') outputs = create_rnn( model, input_blob, seq_lengths, states, dim_in=dim_in, dim_out=dim_out, scope="external/recurrent", outputs_with_grads=outputs_with_grads, memory_optimization=memory_optim, forget_bias=forget_bias, forward_only=forward_only, drop_states=drop_states, static_rnn_unroll_size=T, **kwargs ) workspace.RunNetOnce(model.param_init_net) workspace.FeedBlob( seq_lengths, np.random.randint(1, t + 1, size=(n,)).astype(np.int32) ) return outputs, model.net, states + [input_blob]