import numpy as np import unittest from hypothesis import given, settings import hypothesis.strategies as st from caffe2.python import brew, core, model_helper, rnn_cell import caffe2.python.workspace as ws class TestObservers(unittest.TestCase): def setUp(self): core.GlobalInit(["python", "caffe2"]) ws.ResetWorkspace() self.model = model_helper.ModelHelper() brew.fc(self.model, "data", "y", dim_in=4, dim_out=2, weight_init=('ConstantFill', dict(value=1.0)), bias_init=('ConstantFill', dict(value=0.0)), axis=0) ws.FeedBlob("data", np.zeros([4], dtype='float32')) ws.RunNetOnce(self.model.param_init_net) ws.CreateNet(self.model.net) def testObserver(self): ob = self.model.net.AddObserver("TimeObserver") ws.RunNet(self.model.net) print(ob.average_time()) num = self.model.net.NumObservers() self.model.net.RemoveObserver(ob) assert(self.model.net.NumObservers() + 1 == num) @given( num_layers=st.integers(1, 4), forward_only=st.booleans() ) @settings(deadline=1000) def test_observer_rnn_executor(self, num_layers, forward_only): ''' Test that the RNN executor produces same results as the non-executor (i.e running step nets as sequence of simple nets). ''' Tseq = [2, 3, 4] batch_size = 10 input_dim = 3 hidden_dim = 3 run_cnt = [0] * len(Tseq) avg_time = [0] * len(Tseq) for j in range(len(Tseq)): T = Tseq[j] ws.ResetWorkspace() ws.FeedBlob( "seq_lengths", np.array([T] * batch_size, dtype=np.int32) ) ws.FeedBlob("target", np.random.rand( T, batch_size, hidden_dim).astype(np.float32)) ws.FeedBlob("hidden_init", np.zeros( [1, batch_size, hidden_dim], dtype=np.float32 )) ws.FeedBlob("cell_init", np.zeros( [1, batch_size, hidden_dim], dtype=np.float32 )) model = model_helper.ModelHelper(name="lstm") model.net.AddExternalInputs(["input"]) init_blobs = [] for i in range(num_layers): hidden_init, cell_init = model.net.AddExternalInputs( "hidden_init_{}".format(i), "cell_init_{}".format(i) ) init_blobs.extend([hidden_init, cell_init]) output, last_hidden, _, last_state = rnn_cell.LSTM( model=model, input_blob="input", seq_lengths="seq_lengths", initial_states=init_blobs, dim_in=input_dim, dim_out=[hidden_dim] * num_layers, drop_states=True, forward_only=forward_only, return_last_layer_only=True, ) loss = model.AveragedLoss( model.SquaredL2Distance([output, "target"], "dist"), "loss" ) # Add gradient ops if not forward_only: model.AddGradientOperators([loss]) # init for init_blob in init_blobs: ws.FeedBlob(init_blob, np.zeros( [1, batch_size, hidden_dim], dtype=np.float32 )) ws.RunNetOnce(model.param_init_net) # Run with executor self.enable_rnn_executor(model.net, 1, forward_only) np.random.seed(10022015) input_shape = [T, batch_size, input_dim] ws.FeedBlob( "input", np.random.rand(*input_shape).astype(np.float32) ) ws.FeedBlob( "target", np.random.rand( T, batch_size, hidden_dim ).astype(np.float32) ) ws.CreateNet(model.net, overwrite=True) time_ob = model.net.AddObserver("TimeObserver") run_cnt_ob = model.net.AddObserver("RunCountObserver") ws.RunNet(model.net) avg_time[j] = time_ob.average_time() run_cnt[j] = int(''.join(x for x in run_cnt_ob.debug_info() if x.isdigit())) model.net.RemoveObserver(time_ob) model.net.RemoveObserver(run_cnt_ob) print(avg_time) print(run_cnt) self.assertTrue(run_cnt[1] > run_cnt[0] and run_cnt[2] > run_cnt[1]) self.assertEqual(run_cnt[1] - run_cnt[0], run_cnt[2] - run_cnt[1]) def enable_rnn_executor(self, net, value, forward_only): num_found = 0 for op in net.Proto().op: if op.type.startswith("RecurrentNetwork"): for arg in op.arg: if arg.name == 'enable_rnn_executor': arg.i = value num_found += 1 # This sanity check is so that if someone changes the # enable_rnn_executor parameter name, the test will # start failing as this function will become defective. self.assertEqual(1 if forward_only else 2, num_found)