## @package uniform_sampling # Module caffe2.python.layers.uniform_sampling import numpy as np from caffe2.python import core, schema from caffe2.python.layers.layers import ModelLayer class UniformSampling(ModelLayer): """ Uniform sampling `num_samples - len(input_record)` unique elements from the range [0, num_elements). `samples` is the concatenation of input_record and the samples. input_record is expected to be unique. """ def __init__( self, model, input_record, num_samples, num_elements, name='uniform_sampling', **kwargs ): super(UniformSampling, self).__init__( model, name, input_record, **kwargs ) assert num_elements > num_samples > 0 assert isinstance(input_record, schema.Scalar) self.num_elements = num_elements num_examples_init = ('GivenTensorInt64Fill', {'values': [num_samples]}) self.num_samples = self.create_param(param_name='num_examples', shape=(1,), initializer=num_examples_init, optimizer=model.NoOptim) sampling_blob_init = ('ConstantFill', {'value': float(num_samples) / num_elements, 'dtype': core.DataType.FLOAT}) self.sampling_prob = self.create_param(param_name='prob', shape=(num_samples,), initializer=sampling_blob_init, optimizer=model.NoOptim) self.output_schema = schema.Struct( ( 'samples', schema.Scalar( np.int32, self.get_next_blob_reference("samples") ) ), ('sampling_prob', schema.Scalar(np.float32, self.sampling_prob)), ) def add_ops(self, net): net.StopGradient(self.sampling_prob, self.sampling_prob) shape = net.Shape([self.input_record()], net.NextScopedBlob("shape")) shape = net.Sub([self.num_samples, shape], shape) samples = net.UniqueUniformFill( [shape, self.input_record()], net.NextScopedBlob("samples_before_concat"), min=0, max=self.num_elements - 1, input_as_shape=True ) net.Concat( [self.input_record(), samples], [self.output_schema.samples(), net.NextScopedBlob("split_info")], axis=0 ) net.StopGradient( self.output_schema.samples(), self.output_schema.samples() )