from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer import numpy as np class RandomFourierFeatures(ModelLayer): """ Implementation of random fourier feature map for feature processing. Applies sqrt(2 / output_dims) * cos(wx+b), where: output_dims is the output feature dimensions, and wx + b applies FC using randomized, fixed weight and bias parameters For more information, see the original paper: https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf Inputs: output_dims -- output feature dimensions sigma -- bandwidth for the Gaussian kernel estimator w_init -- initialization options for weight parameter b_init -- initialization options for bias parameter """ def __init__( self, model, input_record, output_dims, sigma, # bandwidth w_init=None, b_init=None, name='random_fourier_features', **kwargs): super(RandomFourierFeatures, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Scalar), "Incorrect input type" input_dims = input_record.field_type().shape[0] assert input_dims >= 1, "Expected input dimensions >= 1, got %s" \ % input_dims self.output_dims = output_dims assert self.output_dims >= 1, "Expected output dimensions >= 1, got %s" \ % self.output_dims self.output_schema = schema.Scalar( (np.float32, (self.output_dims, )), self.get_next_blob_reference('output') ) assert sigma > 0.0, "Expected bandwidth > 0, got %s" % sigma # Initialize train_init_net parameters w_init = w_init if w_init else ( 'GaussianFill', {'mean': 0.0, 'std': 1.0 / sigma} ) b_init = b_init if b_init else ( 'UniformFill', {'min': 0.0, 'max': 2 * np.pi} ) self.w = self.create_param(param_name='w', shape=[self.output_dims, input_dims], initializer=w_init, optimizer=model.NoOptim) self.b = self.create_param(param_name='b', shape=[self.output_dims], initializer=b_init, optimizer=model.NoOptim) def add_ops(self, net): # Random features: wx + b cosine_arg = net.FC(self.input_record.field_blobs() + [self.w, self.b], net.NextScopedBlob("cosine_arg")) # Apply cosine to new vectors new_feature_vec = net.Cos([cosine_arg], net.NextScopedBlob('new_feature_vec')) # Multiply each element in vector by sqrt(2/D) scale = np.sqrt(2.0 / self.output_dims) net.Scale([new_feature_vec], self.output_schema.field_blobs(), scale=scale)