# Module caffe2.python.layers.dropout from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer class Dropout(ModelLayer): def __init__( self, model, input_record, name='dropout', ratio=0.5, dropout_for_eval=False, **kwargs): super(Dropout, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Scalar), "Incorrect input type" assert (ratio >= 0 and ratio < 1.0), \ "Expected 0 <= ratio < 1, but got ratio of %s" % ratio self.output_schema = input_record.clone_schema() self.output_schema.set_value(self.get_next_blob_reference('output')) self.dropout_for_eval = dropout_for_eval self.ratio = ratio def _add_ops(self, net, is_test): input_blob = self.input_record.field_blobs() output_blobs = self.output_schema.field_blobs() \ + [net.NextScopedBlob('d_mask')] net.Dropout(input_blob, output_blobs, ratio=self.ratio, is_test=is_test) def add_train_ops(self, net): self._add_ops(net, is_test=False) def add_eval_ops(self, net): self._add_ops(net, is_test=(not self.dropout_for_eval)) def add_ops(self, net): self.add_eval_ops(net)