## @package bpr_loss # Module caffe2.python.layers.bpr_loss from caffe2.python import schema from caffe2.python.layers.layers import ( ModelLayer, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np # ref: https://arxiv.org/pdf/1205.2618.pdf class BPRLoss(ModelLayer): def __init__(self, model, input_record, name='bpr_loss', **kwargs): super(BPRLoss, self).__init__(model, name, input_record, **kwargs) assert schema.is_schema_subset( schema.Struct( ('pos_prediction', schema.Scalar()), ('neg_prediction', schema.List(np.float32)), ), input_record ) self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('output')) def add_ops(self, net): # formula: # loss = - SUM(Ln(Sigmoid(Simlarity(u, pos) - Simlarity(u, neg)))) neg_score = self.input_record.neg_prediction['values']() pos_score = net.LengthsTile( [ self.input_record.pos_prediction(), self.input_record.neg_prediction['lengths']() ], net.NextScopedBlob('pos_score_repeated') ) # https://www.tensorflow.org/api_docs/python/tf/math/log_sigmoid softplus = net.Softplus([net.Sub([neg_score, pos_score])]) net.ReduceFrontSum(softplus, self.output_schema.field_blobs())