import unittest import hypothesis.strategies as st from hypothesis import given, settings import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.ideep_test_util as mu @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") class ReluTest(hu.HypothesisTestCase): @given(X=hu.tensor(), inplace=st.booleans(), **mu.gcs) @settings(deadline=1000) def test_relu(self, X, inplace, gc, dc): op = core.CreateOperator( "Relu", ["X"], ["Y"] if not inplace else ["X"], ) # go away from the origin point to avoid kink problems X += 0.02 * np.sign(X) X[X == 0.0] += 0.02 self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) @given(size=st.integers(7, 9), input_channels=st.integers(1, 3), batch_size=st.integers(1, 3), inplace=st.booleans(), **mu.gcs_cpu_ideep) @settings(max_examples=10, deadline=None) def test_int8_relu(self, size, input_channels, batch_size, inplace, gc, dc): relu_fp32 = core.CreateOperator( "Relu", ["X"], ["Y"] if not inplace else ["X"], device_option=dc[0] ) X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 # go away from the origin point to avoid kink problems X += 0.02 * np.sign(X) X[X == 0.0] += 0.02 if X.min() >=0: scale = np.absolute(X).max() / 0xFF zero_point = 0 else: scale = np.absolute(X).max() / 0x7F zero_point = 128 old_ws_name = workspace.CurrentWorkspace() workspace.SwitchWorkspace("_device_check_", True) workspace.FeedBlob("X", X, dc[0]) workspace.RunOperatorOnce(relu_fp32) Y = workspace.FetchBlob("X" if inplace else "Y") workspace.ResetWorkspace() sw2nhwc = core.CreateOperator( "NCHW2NHWC", ["Xi"], ["Xi_nhwc"], device_option=dc[1] ) quantize = core.CreateOperator( "Int8Quantize", ["Xi_nhwc"], ["Xi_quantized"], engine="DNNLOWP", device_option=dc[1], Y_zero_point=zero_point, Y_scale=scale, ) relu = core.CreateOperator( "Int8Relu", ["Xi_quantized"], ["Y_quantized"] if not inplace else ["Xi_quantized"], engine="DNNLOWP", device_option=dc[1], ) dequantize = core.CreateOperator( "Int8Dequantize", ["Y_quantized"] if not inplace else ["Xi_quantized"], ["Y_nhwc"], engine="DNNLOWP", device_option=dc[1], ) sw2nchw = core.CreateOperator( "NHWC2NCHW", ["Y_nhwc"], ["Y_out"], device_option=dc[1] ) net = caffe2_pb2.NetDef() net.op.extend([sw2nhwc, quantize, relu, dequantize, sw2nchw]) workspace.FeedBlob("Xi", X, dc[1]) workspace.RunNetOnce(net) Y_out = workspace.FetchBlob("Y_out") MSE = np.square(np.subtract(Y, Y_out)).mean() if MSE > 0.005: print(Y.flatten()) print(Y_out.flatten()) print(np.max(np.abs(Y_out - Y))) print("MSE", MSE) self.assertTrue(False) workspace.SwitchWorkspace(old_ws_name) if __name__ == "__main__": unittest.main()