## @package elementwise_linear # Module caffe2.python.helpers.elementwise_linear from caffe2.python import core from caffe2.python.modeling.parameter_info import ParameterTags def _elementwise_linear( model, op_call, blob_in, blob_out, dim, weight_init=None, bias_init=None, **kwargs ): """Elementwise_Linear""" weight_init = weight_init or ('ConstantFill', {'value': 1.0}) bias_init = bias_init or ('ConstantFill', {'value': 0.0}) blob_out = blob_out or model.net.NextName() if model.init_params: weight = model.param_init_net.__getattr__(weight_init[0])( [], blob_out + '_w', shape=[dim], **weight_init[1] ) bias = model.param_init_net.__getattr__(bias_init[0])( [], blob_out + '_b', shape=[dim], **bias_init[1] ) else: weight = core.ScopedBlobReference( blob_out + '_w', model.param_init_net) bias = core.ScopedBlobReference( blob_out + '_b', model.param_init_net) model.AddParameter(weight, ParameterTags.WEIGHT) model.AddParameter(bias, ParameterTags.BIAS) return op_call([blob_in, weight, bias], blob_out, **kwargs) def elementwise_linear(model, *args, **kwargs): return _elementwise_linear( model, model.net.ElementwiseLinear, *args, **kwargs)