from __future__ import absolute_import, division, print_function, unicode_literals import collections import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, dyndep, workspace from dnnlowp_test_utils import check_quantized_results_close from hypothesis import given dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops") workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"]) class DNNLowPConcatOpTest(hu.HypothesisTestCase): @given( dim1=st.integers(128, 256), dim2=st.integers(128, 256), in_quantized=st.booleans(), out_quantized=st.booleans(), **hu.gcs_cpu_only ) def test_dnnlowp_concat_int(self, dim1, dim2, in_quantized, out_quantized, gc, dc): # X has scale 1, so exactly represented after quantization min_ = -100 max_ = min_ + 255 X = np.round(np.random.rand(dim1, dim2) * (max_ - min_) + min_) X = X.astype(np.float32) X[0, 0] = min_ X[0, 1] = max_ # Y has scale 1/2, so exactly represented after quantization Y = np.round(np.random.rand(dim1, dim2) * 255 / 2 - 64) Y = Y.astype(np.float32) Y[0, 0] = -64 Y[0, 1] = 127.0 / 2 Output = collections.namedtuple("Output", ["Z", "op_type", "engine"]) outputs = [] op_engine_list = [ ("Concat", ""), ("Concat", "DNNLOWP"), ("Int8Concat", "DNNLOWP"), ] for op_type, engine in op_engine_list: net = core.Net("test_net") do_quantize = "DNNLOWP" in engine and in_quantized do_dequantize = "DNNLOWP" in engine and out_quantized if do_quantize: quantize_x = core.CreateOperator( "Quantize", ["X"], ["X_q"], engine=engine, device_option=gc ) quantize_y = core.CreateOperator( "Quantize", ["Y"], ["Y_q"], engine=engine, device_option=gc ) net.Proto().op.extend([quantize_x, quantize_y]) concat = core.CreateOperator( op_type, ["X_q", "Y_q"] if do_quantize else ["X", "Y"], ["Z_q" if do_dequantize else "Z", "split"], dequantize_output=not do_dequantize, engine=engine, device_option=gc, axis=0, ) net.Proto().op.extend([concat]) if do_dequantize: dequantize = core.CreateOperator( "Dequantize", ["Z_q"], ["Z"], engine=engine, device_option=gc ) net.Proto().op.extend([dequantize]) self.ws.create_blob("X").feed(X, device_option=gc) self.ws.create_blob("Y").feed(Y, device_option=gc) self.ws.create_blob("split") self.ws.run(net) outputs.append( Output(Z=self.ws.blobs["Z"].fetch(), op_type=op_type, engine=engine) ) check_quantized_results_close(outputs)