# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from hypothesis import given import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu class TestTTContraction(hu.HypothesisTestCase): @given(D=st.integers(min_value=5, max_value=20), K=st.integers(min_value=5, max_value=20), M=st.integers(min_value=5, max_value=20), N=st.integers(min_value=5, max_value=20), **hu.gcs) def test_tt_contraction(self, D, K, M, N, gc, dc): A = np.random.rand(K, M).astype(np.float32) B = np.random.rand(D, K, N).astype(np.float32) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) op = core.CreateOperator( 'TTContraction', ['A', 'B'], ['C'], K=K, M=M, N=N) workspace.RunOperatorOnce(op) def tt_contraction_ref(A_, B_): return ((A_[:, :, np.newaxis] * B_[:, :, np.newaxis, :]) .sum(axis=1).flatten()), # Check against numpy reference self.assertReferenceChecks(gc, op, [A, B], tt_contraction_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [A, B], [0]) # Gradient check wrt A self.assertGradientChecks(gc, op, [A, B], 0, [0]) # Gradient check wrt B self.assertGradientChecks(gc, op, [A, B], 1, [0])