#!/usr/bin/env python3 import argparse import collections import copy import csv import functools import importlib import io import itertools import logging import os import random import signal import subprocess import sys import time from contextlib import contextmanager from typing import NamedTuple import numpy as np import pandas as pd import psutil import torch import torch._dynamo import torch._dynamo.utils import torch.distributed from scipy.stats import gmean, ttest_ind from torch._dynamo.exc import BackendCompilerFailed from torch._dynamo.profiler import fx_insert_profiling, Profiler from torch._dynamo.testing import dummy_fx_compile, format_speedup, same from torch._dynamo.utils import clone_inputs from torch._functorch.aot_autograd import set_model_name from torch._inductor import config as inductor_config from torch._inductor.utils import fresh_inductor_cache from torch._subclasses.fake_tensor import FakeTensorMode from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils._pytree import tree_map try: from .microbenchmarks.operator_inp_utils import OperatorInputsMode except ImportError: from microbenchmarks.operator_inp_utils import OperatorInputsMode try: import torch_xla.core.xla_model as xm except ImportError: # ignore the error if torch_xla is not installed pass log = logging.getLogger(__name__) # We are primarily interested in TF32 torch.backends.cuda.matmul.allow_tf32 = True current_name = "" current_device = "" current_batch_size = None output_filename = None class CI(NamedTuple): backend: str # aot_eager or inductor training: bool dynamic: bool = False device: str = "cuda" CI_SKIP = collections.defaultdict(list) # Skips for dynamic=False CI_SKIP[CI("aot_eager", training=False)] = [ # TorchBench "DALLE2_pytorch", # AttributeError: text_encodings "demucs", # OOM # torchrec_dlrm requires gcc-11, https://github.com/pytorch/benchmark/pull/1427 "torchrec_dlrm", # all dynamic shapes errors for detectron variants "detectron2_fasterrcnn_r_101_c4", "detectron2_fasterrcnn_r_101_dc5", "detectron2_fasterrcnn_r_101_fpn", "detectron2_fasterrcnn_r_50_c4", "detectron2_fasterrcnn_r_50_dc5", "detectron2_fasterrcnn_r_50_fpn", "detectron2_fcos_r_50_fpn", "detectron2_maskrcnn_r_101_c4", "detectron2_maskrcnn_r_101_fpn", "detectron2_maskrcnn_r_50_c4", "detectron2_maskrcnn_r_50_fpn", "moco", # Please convert all Tensors to FakeTensors first "hf_BigBird", # OOM "tacotron2", # AssertionError: Deduped args out of bounds # Huggingface "BartForConditionalGeneration", # OOM "DebertaV2ForQuestionAnswering", # OOM ] CI_SKIP[CI("aot_eager", training=True)] = [ *CI_SKIP[CI("aot_eager", training=False)], # TorchBench "Background_Matting", # fp64_OOM "hf_T5_base", # fp64_OOM "mobilenet_v2_quantized_qat", # fp64_OOM "resnet50_quantized_qat", # fp64_OOM "moco", "pytorch_struct", "vision_maskrcnn", # Huggingface "MBartForConditionalGeneration", # OOM "M2M100ForConditionalGeneration", # OOM "XGLMForCausalLM", # OOM # TIMM "cait_m36_384", # fp64_OOM "convit_base", # fp64_OOM "fbnetv3_b", # Accuracy (blocks.2.2.bn1.weight.grad) "levit_128", # Accuracy (patch_embed.0.c.weight.grad) "sebotnet33ts_256", # Accuracy (stem.conv1.conv.weight.grad) "xcit_large_24_p8_224", # fp64_OOM, "gernet_l", # accuracy https://github.com/pytorch/pytorch/issues/93847 "gluon_xception65", # accuracy https://github.com/pytorch/pytorch/issues/93847 "tinynet_a", # accuracy https://github.com/pytorch/pytorch/issues/93847 ] CI_SKIP[CI("inductor", training=False)] = [ *CI_SKIP[CI("aot_eager", training=False)], # TorchBench "detectron2", "hf_T5", # accuracy "hf_BigBird", # accuracy "hf_GPT2_large", # OOM "maml", # accuracy "mobilenet_v2_quantized_qat", # The eval test only supports CPU "moco", # accuracy "pytorch_struct", # Test eval is not implemented "pyhpc_equation_of_state", # Accuracy "pyhpc_turbulent_kinetic_energy", # Accuracy "tacotron2", "vision_maskrcnn", # accuracy # Huggingface "AllenaiLongformerBase", "DebertaV2ForQuestionAnswering", # OOM "OPTForCausalLM", # OOM # TIMM "cait_m36_384", # Accuracy "botnet26t_256", # accuracy https://github.com/pytorch/pytorch/issues/93847 "gluon_xception65", # accuracy https://github.com/pytorch/pytorch/issues/93847 "xcit_large_24_p8_224", # TIMEOUT ] CI_SKIP[CI("inductor", training=False, device="cpu")] = [ # TorchBench "drq", # Need to update torchbench "detectron2_fasterrcnn_r_101_c4", "detectron2_fasterrcnn_r_101_dc5", "detectron2_fasterrcnn_r_101_fpn", "detectron2_fasterrcnn_r_50_c4", "detectron2_fasterrcnn_r_50_dc5", "detectron2_fasterrcnn_r_50_fpn", "detectron2_fcos_r_50_fpn", "detectron2_maskrcnn_r_101_c4", "detectron2_maskrcnn_r_101_fpn", "detectron2_maskrcnn_r_50_c4", "detectron2_maskrcnn_r_50_fpn", "doctr_det_predictor", # requires newer gcc "doctr_reco_predictor", # requires newer gcc "hf_Bert_large", # OOM "hf_GPT2_large", # Intermittent failure on CI "hf_T5_base", # OOM "mobilenet_v2_quantized_qat", "pyhpc_turbulent_kinetic_energy", "vision_maskrcnn", "resnet50_quantized_qat", # Eager model failed to run(Quantize only works on Float Tensor, got Double) # torchrec_dlrm requires gcc-11, https://github.com/pytorch/benchmark/pull/1427 "torchrec_dlrm", # Huggingface "AllenaiLongformerBase", "BartForConditionalGeneration", # OOM "DebertaV2ForQuestionAnswering", # OOM "MBartForConditionalGeneration", # Accuracy https://github.com/pytorch/pytorch/issues/94793 "PLBartForConditionalGeneration", # Accuracy https://github.com/pytorch/pytorch/issues/94794 # TIMM "cait_m36_384", # Accuracy "pnasnet5large", # OOM "xcit_large_24_p8_224", # OOM https://github.com/pytorch/pytorch/issues/95984 ] CI_SKIP[CI("inductor", training=True)] = [ *CI_SKIP[CI("inductor", training=False)], # TorchBench "Background_Matting", # fp64_OOM "dlrm", # Fails on CI - unable to repro locally "hf_T5_base", # accuracy "mobilenet_v3_large", # accuracy "resnet50_quantized_qat", # Eager model failed to run # Huggingface "BlenderbotForCausalLM", # OOM "GoogleFnet", # Eager model failed to run "MBartForConditionalGeneration", # OOM "M2M100ForConditionalGeneration", # OOM "XGLMForCausalLM", # OOM "MT5ForConditionalGeneration", # fails accuracy # TIMM "convit_base", # fp64_OOM "eca_halonext26ts", # accuracy "fbnetv3_b", # accuracy "levit_128", # fp64_OOM # https://github.com/pytorch/pytorch/issues/94066 "rexnet_100", # Accuracy failed for key name stem.bn.weight.grad "sebotnet33ts_256", # Accuracy failed for key name stem.conv1.conv.weight.grad "xcit_large_24_p8_224", # fp64_OOM ] # Skips for dynamic=True CI_SKIP[CI("aot_eager", training=False, dynamic=True)] = [ *CI_SKIP[CI("aot_eager", training=False)], # torchbench "vision_maskrcnn", # sympy RecursionError ] CI_SKIP[CI("aot_eager", training=True, dynamic=True)] = [ *CI_SKIP[CI("aot_eager", training=True)], *CI_SKIP[CI("aot_eager", training=False, dynamic=True)], # timm_models "botnet26t_256", # sympy RecursionError "eca_botnext26ts_256", # sympy RecursionError ] CI_SKIP[CI("inductor", training=False, dynamic=True)] = [ *CI_SKIP[CI("aot_eager", training=False, dynamic=True)], *CI_SKIP[CI("inductor", training=False)], # torchbench "functorch_dp_cifar10", # timeout "opacus_cifar10", # timeout "PegasusForCausalLM", # TypeError: Cannot convert symbols to int "PegasusForConditionalGeneration", # TypeError: Cannot convert symbols to int # timm_models "convit_base", # TypeError: Cannot convert symbols to int "pnasnet5large", # CompilationError: math.ceil ] CI_SKIP[CI("inductor", training=True, dynamic=True)] = [ # NB: Intentionally omitting for symmetry with dynamic=False # *CI_SKIP[CI("aot_eager", training=True, dynamic=True)], *CI_SKIP[CI("inductor", training=False, dynamic=True)], *CI_SKIP[CI("inductor", training=True)], # torchbench "pytorch_unet", # TypeError: unhashable type: 'SymInt' # timm_models "rexnet_100", # Accuracy failed for key name stem.bn.weight.grad "tf_efficientnet_b0", # NameError: name 's1' is not defined ] CI_SKIP_OPTIMIZER = { # TIMM "convmixer_768_32", # accuracy "hrnet_w18", # Stack issue in fx # TorchBench "dlrm", # symbolic shapes error # HF "pnasnet5large", # Stack issue in fx "MobileBertForMaskedLM", # Stack issue in fx "MobileBertForQuestionAnswering", # Stack issue in fx "PegasusForConditionalGeneration", # OOM } def model_specified_by_path(path_and_class_str): return ":" in path_and_class_str def load_model_from_path(path_and_class_str): configs = {} for kvstr in path_and_class_str.split(","): k, v = kvstr.split(":") configs[k] = v for name in ["path", "class"]: if name not in configs: raise RuntimeError( "Invalid --only arguments. Check help message for the correct format" ) path = configs["path"] class_name = configs["class"] if path[:1] != "/": raise RuntimeError( "Use absolute path since dynamo may change the current working directory which makes using relative path tricky" ) spec = importlib.util.spec_from_file_location("module_name", path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) model_class = getattr(module, class_name) assert issubclass(model_class, torch.nn.Module) model = model_class() assert hasattr(model, "get_example_inputs") inputs = model.get_example_inputs() return model, inputs def output_csv(filename, headers, row): assert filename existed = os.path.exists(filename) output = csv.writer( io.TextIOWrapper( open(filename, "ab", buffering=0), "utf-8", write_through=True, ), lineterminator="\n", ) if not existed: output.writerow(headers) output.writerow([(f"{x:.4f}" if isinstance(x, float) else x) for x in row]) class NullContext: def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def nothing(f): return f @functools.lru_cache(None) def patch_torch_manual_seed(): """Make torch manual seed deterministic. Helps with accuracy testing.""" def deterministic_torch_manual_seed(*args, **kwargs): from torch._C import default_generator seed = 1337 import torch.cuda if not torch.cuda._is_in_bad_fork(): torch.cuda.manual_seed_all(seed) return default_generator.manual_seed(seed) torch.manual_seed = deterministic_torch_manual_seed def synchronize(): pass def print_summary(filename): if not (filename and os.path.exists(filename)): return data = pd.read_csv(filename) if "tag" in data.columns: for tag in data.tag.unique(): if tag == "0.0000": continue # This happens for failed runs print(f"\nSummary for tag={tag}:") print_summary_table(data[data.tag == tag]) else: print_summary_table(data) def print_summary_table(data): width = max(map(len, data.columns)) for col in data.columns: try: if col in ("dev", "name", "batch_size", "tag"): continue elif col in ("pct_ops", "pct_time"): print(col.ljust(width), f"{data[col].mean():.3%}") elif col in ("graphs", "graph_calls", "captured_ops", "total_ops"): print(col.ljust(width), f"{data[col].mean():.3f}") elif col in ("compilation_latency"): print(col.ljust(width), f"mean={data[col].mean():.3f} seconds") elif col in ("compression_ratio"): print(col.ljust(width), f"mean={data[col].mean():.3f}x") elif col in ("accuracy"): pass_rate = (data[col] == "pass").mean() print(col.ljust(width), f"pass_rate={100*pass_rate:.2f}%") else: cdata = data[col].clip(1) print( col.ljust(width), f"gmean={gmean(cdata):.2f}x mean={cdata.mean():.3f}x", ) except Exception as e: pass def tensor_is_on_xla(tensors): if not isinstance(tensors, (tuple, list)): tensors = [tensors] tensors = [x for x in tensors if isinstance(x, torch.Tensor)] return any(map(lambda x: x.device.type == "xla", tensors)) def timed( model, model_iter_fn, example_inputs, times=1, return_result=False, collect_outputs=False, ): use_xla = tensor_is_on_xla(example_inputs) synchronize() if use_xla: xm.mark_step() xm.wait_device_ops() time_total = 0 # Dont collect outputs to correctly measure timing for _ in range(times): # Put this call inside the loop to reset the seed for each iteration. # Don't include reset_rng_state() to correctly measure timing reset_rng_state(use_xla) t_iter_begin = time.perf_counter() result = model_iter_fn(model, example_inputs, collect_outputs=collect_outputs) # instead of calling sync on result_list, we should call mark_step. # In training case, result_list may be empty, but we want to # send all the pending graphs for compilation. if use_xla: # For the model running on regular torchxla (baseline), we need the # mark step to send the accumulated graph for compilation. # # For the model running with dynamo/torchxla bridge, in training case, # we need the mark step to send the optimizer graph out for # compilation. xm.mark_step() t_iter_end = time.perf_counter() time_total += t_iter_end - t_iter_begin t_0 = time.perf_counter() if use_xla: xm.wait_device_ops() synchronize() t_1 = time.perf_counter() time_total += t_1 - t_0 return (time_total, result) if return_result else time_total class Stats: totals = collections.defaultdict(collections.Counter) @classmethod def reset_counters(cls): for k, v in torch._dynamo.utils.counters.items(): cls.totals[k].update(v) ok = torch._dynamo.utils.counters["frames"]["ok"] total = torch._dynamo.utils.counters["frames"]["total"] torch._dynamo.utils.counters.clear() return ok, total @classmethod def print_summary(cls): for k, v in sorted(cls.totals.items()): lines = "\n ".join(map(str, v.most_common(50))) print(f"STATS {k}\n {lines}") @classmethod def aot_summary(cls): return [cls.totals["aot_autograd"]["total"], cls.totals["aot_autograd"]["ok"]] def coverage_experiment(args, model_iter_fn, model, example_inputs): """ Test operator/model coverage of TorchDynamo and record statistics taken from a profiler. This target is mainly intended to check correctness. Writes to ./coverage.csv """ profiler = Profiler() frozen_model_iter_fn = torch._dynamo.run(model_iter_fn) with profiler.prof: frozen_model_iter_fn(model, example_inputs) coverage_result = profiler.results() output_csv( output_filename, ( "dev", "name", "batch_size", "graphs", "graph_calls", "captured_ops", "total_ops", "pct_ops", "pct_time", ), [ current_device, current_name, current_batch_size, ] + coverage_result.tocsv(), ) return coverage_result def speedup_experiment_fx2trt(args, model_iter_fn, model, example_inputs): """ Measure speedups over eager using the trt inference backend. TRT backend is based fx graph generated by torch._dynamo. Writes to ./speedups_fx2trt.csv """ return speedup_experiment(args, model_iter_fn, model, example_inputs) def recompile_profiler_experiment(args, model_iter_fn, model, example_inputs): prof = torch._dynamo.utils.CompileProfiler() opt_model_iter_fn = torch._dynamo.optimize(prof, nopython=args.nopython)( model_iter_fn ) opt_model_iter_fn(model, example_inputs) output_csv( output_filename, ["model", "profiler report"], [current_name, prof.report()] ) met = prof.get_metrics() guard_failures = len(met["guard_failures"]) return [guard_failures] def randomize_input(inputs): if isinstance(inputs, (list, tuple)): return type(inputs)([randomize_input(x) for x in inputs]) elif isinstance(inputs, torch.Tensor): if inputs.dtype in (torch.float32, torch.float64): torch._dynamo.utils.counters["randomize_input"]["times"] += 1 return torch.randn_like(inputs) elif inputs.dtype == torch.int64: # Note: we can not simply tune integer tensors as follows # `return torch.randint_like(inputs, high=inputs.max().item())` # This may break some invariants between tensors. # E.g. in embedding lookup case, one tensor is the length # and another is an indices tensor. return inputs else: raise RuntimeError( f"randomize_input need support tensor of type {inputs.dtype}" ) else: raise RuntimeError( f"randomize_input can not handle input of type {type(inputs)}" ) def maybe_mark_step(args): if args.trace_on_xla: xm.mark_step() def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs): """ Measure speedups over eager. Writes to ./speedups.csv """ if args.dynamic_shapes: return speedup_experiment_ds(args, model_iter_fn, model, example_inputs) timings = np.zeros((args.repeat, 2), np.float64) # if we randomize the input, we should also check the result is correct should_check_result = should_randomize_input = args.randomize_input is_correct = True import contextlib @contextlib.contextmanager def maybe_profile(*args, **kwargs): if kwargs.pop("enabled", True): with torch.profiler.profile(*args, **kwargs) as p: yield p else: yield @contextlib.contextmanager def maybe_mark_profile(*args, **kwargs): prof: torch.profiler.profile = kwargs.pop("p", None) mark = kwargs.pop("mark", None) if prof: with torch.profiler.record_function(mark): yield else: yield times = args.iterations_per_run # Use higher tolerance for XLA since XLA cause numerical unstability when # graph size changes tolerance = args.xla_tolerance if args.trace_on_xla else 1e-4 torch._dynamo.config.repro_tolerance = tolerance with maybe_profile(enabled=args.export_profiler_trace) as p: frozen_model_iter_fn = torch._dynamo.run(model_iter_fn) for rep in range(args.repeat): inputs = ( randomize_input(copy.deepcopy(example_inputs)) if should_randomize_input else example_inputs ) # need call mark_step to perform the computation # on randomize_input. Otherwise the first call using the # inputs will incur high penalty then the next one. maybe_mark_step(args) # interleave the runs to handle frequency scaling and load changes with maybe_mark_profile(p=p, mark="expected"): timings[rep, 0], expected_output = timed( model, model_iter_fn, inputs, return_result=True, times=times, collect_outputs=args.collect_outputs, ) # call mark_step between the 2 calls to make the comparison fair. maybe_mark_step(args) with maybe_mark_profile(p=p, mark="actual"): timings[rep, 1], actual_output = timed( model, frozen_model_iter_fn, inputs, return_result=True, times=times, collect_outputs=args.collect_outputs, ) if should_check_result: is_correct = is_correct and same( expected_output, actual_output, tol=tolerance ) if args.export_profiler_trace: name = args.profiler_trace_name + "_" + model.name + ".json" name = os.path.join(torch._dynamo.config.base_dir, name) p.export_chrome_trace(name) pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue median = np.median(timings, axis=0) speedup = median[0] / median[1] if args.dump_raw_metrics: np.save( f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy", timings, ) first_headers = ["dev", "name", "batch_size"] first_fields = [current_device, current_name, current_batch_size] if "tag" in kwargs: first_headers.append("tag") first_fields.append(kwargs["tag"]) headers = first_headers + ["speedup", "abs_latency"] row = first_fields + [float(speedup), median[1] * 1000] if "compilation_latency" in kwargs: headers += [ "compilation_latency", "compression_ratio", "eager_peak_mem", "dynamo_peak_mem", ] row.append(kwargs["compilation_latency"]) row.append(kwargs["compression_ratio"]) row.append(kwargs["eager_peak_mem"]) row.append(kwargs["dynamo_peak_mem"]) if "dynamo_stats" in kwargs: for k, v in kwargs["dynamo_stats"].items(): headers.append(k) row.append(v) output_csv( output_filename, headers, row, ) headers, data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True) assert ( output_filename.find(".csv") > 0 ), f"expected output_filename to be a .csv, but got {output_filename}" output_csv( output_filename[:-4] + "_compilation_metrics.csv", first_headers + headers, first_fields + data, ) return format_speedup(speedup, pvalue, is_correct=is_correct) def speedup_experiment_ds(args, model_iter_fn, model, example_inputs): """ Run dynamic shapes benchmarks. Requires dynamic shape compatible models, which provide a list of example inputs. Warms up using the first input example and then iterates the inputs, measuring (and expecting minimal) variance between the runtime for different examples. """ timings = np.zeros((args.repeat, len(example_inputs), 2), np.float64) if args.repeat > 5: print( f"\ndynamic shapes experiments are slow, consider setting --repeat less than {args.repeat}\n" ) nwarmup = 4 for rep in range(args.repeat): # Start each rep fresh, e.g. only warmup on example 0 torch._dynamo.reset() optimized_model_iter_fn = optimize_ctx(model_iter_fn) for _ in range(nwarmup): optimized_model_iter_fn(model, example_inputs[0]) for input_idx, inputs in enumerate(example_inputs): # interleave the runs to handle frequency scaling and load changes timings[rep, input_idx, 0] = timed( model, model_iter_fn, inputs, return_result=False ) # different from regular speedup_experiment, we _DO_ want to allow recompilation timings[rep, input_idx, 1] = timed( model, optimized_model_iter_fn, inputs, return_result=False ) medians = np.median(timings, axis=0) speedups = list(medians[:, 0] / medians[:, 1]) speedups_mean = np.mean(speedups) speedups_median = np.median(speedups) speedups_var = np.var(speedups) # TODO this x[0] is not going to work in general but bert only has 1 input shapes = [x[0].shape for x in example_inputs] shape_keys = sorted(set(shapes)) shape_speedups = { shape: list( map( lambda it: it[1], filter(lambda it: it[0] == shape, zip(shapes, speedups)), ) ) for shape in shape_keys } output_str = ( f"mean: {speedups_mean:.3f}, median: {speedups_median:.3f}, var: {speedups_var:.3f}" + "\nSpeedups by shape: " + "\n".join( [ f"{shape}: " + ", ".join([f"{speedup: .3g}" for speedup in shape_speedups[shape]]) for shape in shape_keys ] ) ) output_csv( output_filename, ("dev", "name", "batch_size", "speedup mean", "speedup median", "speedup var"), [ current_device, current_name, current_batch_size, speedups_mean, speedups_median, speedups_var, ], ) return output_str def overhead_experiment(*args, model_iter_fn): """ Measure overheads of TorchDynamo by running with no backend (only eager+FX), and reporting speedup/slowdown over eager. Writes to ./overheads.csv """ return speedup_experiment(*args, model_iter_fn) def print_fx(gm, example_inputs): print(gm.graph) return gm def print_aten_ops(gm, example_inputs): from functorch.compile import aot_module def trace_printer(gm, _): print(gm.graph) return gm return aot_module(gm, fw_compiler=trace_printer, bw_compiler=trace_printer) def baselines(models, model_iter_fn, example_inputs, args): """ Common measurement code across all baseline experiments. """ models = list(models) for idx, (name, model) in enumerate(models): if idx == 0: result0 = model_iter_fn(model, example_inputs) elif model is not None: try: result = model_iter_fn(model, example_inputs) if same(result0, result): continue print(name, "is INCORRECT") except Exception: log.exception("error checking %s", name) models[idx] = (name, None) timings = np.zeros((args.repeat, len(models)), np.float64) timings.fill(1.0e10) for rep in range(args.repeat): for idx, (name, model) in enumerate(models): if model is not None: try: timings[rep, idx] = timed(model, model_iter_fn, example_inputs) except Exception: pass pvalue = [ ttest_ind(timings[:, 0], timings[:, i]).pvalue for i in range(1, timings.shape[1]) ] median = np.median(timings, axis=0) speedup = median[0] / median[1:] for idx, (name, model) in enumerate(models[1:]): if model is None: speedup[idx] = 0.0 result = " ".join( [ format_speedup(s, p, m is not None) for s, p, m in zip(speedup, pvalue, [m for n, m in models[1:]]) ] ) output_csv( output_filename, ("dev", "name", "batch_size") + tuple(n for n, m in models[1:]), [current_device, current_name, current_batch_size] + [f"{x:.4f}" for x in speedup], ) return result def try_script(model, example_inputs): try: return torch.jit.script(model) except Exception: return None def read_batch_size_from_file(args, filename, model_name): batch_size = None if os.path.exists("benchmarks"): filename = os.path.join("benchmarks", filename) assert os.path.exists(filename), filename with open(filename, "r") as f: lines = f.readlines() lines = [i.split(",") for i in lines if len(i.strip()) > 0] for val in lines: cur_name, b = val if model_name == cur_name: batch_size = int(b) if batch_size is None: log.warning("Could not find batch size for {}".format(model_name)) elif batch_size == -1: raise RuntimeError( f"Batch size is unset for {model_name} in {args.batch_size_file}" ) print(f"batch size: {batch_size}") return batch_size class TimeOutException(Exception): pass def alarm_handler(signum, frame): raise TimeOutException() def exit_after(s): """ Decorator to raise TimeoutException if the fn is taking more than s seconds to run. """ def outer(fn): def inner(*args, **kwargs): signal.signal(signal.SIGALRM, alarm_handler) signal.alarm(s) try: result = fn(*args, **kwargs) finally: signal.alarm(0) return result return inner return outer def get_peak_memory(): return torch.cuda.max_memory_allocated() / 10**9 def null_experiment(args, model_iter_fn, model, example_inputs): """ A no-op experiment useful for making sure TorchBenchark alone works properly. """ return [] def cast_to(dtype, model, inputs): # cast model and inputs to fp16 if dtype == torch.float16: model = model.half() else: model = model.to(dtype) inputs = tree_map( lambda x: x.to(dtype) if isinstance(x, torch.Tensor) and x.is_floating_point() else x, inputs, ) return model, inputs def cast_to_bf16(model, inputs): return cast_to(torch.bfloat16, model, inputs) def cast_to_fp16(model, inputs): return cast_to(torch.float16, model, inputs) def cast_to_fp64(model, inputs): return cast_to(torch.float64, model, inputs) def cast_to_fp32(model, inputs): return cast_to(torch.float32, model, inputs) def reset_rng_state(use_xla=False): torch.manual_seed(1337) random.seed(1337) np.random.seed(1337) if use_xla: xm.set_rng_state(1337, str(xm.xla_device())) class DummyGradScaler: def scale(self, loss): return loss def get_dynamo_stats(): # TODO: consider deepcopy'ing the entire counters struct and # adding a helper to do subtraction on it return collections.Counter( { "calls_captured": torch._dynamo.utils.counters["stats"]["calls_captured"], "unique_graphs": torch._dynamo.utils.counters["stats"]["unique_graphs"], "graph_breaks": sum(torch._dynamo.utils.counters["graph_break"].values()), # NB: The plus removes zero counts "unique_graph_breaks": len(+torch._dynamo.utils.counters["graph_break"]), } ) def maybe_fresh_cache(fn, is_cold_start): def inner(*args, **kwargs): cache_minder = NullContext() if is_cold_start: cache_entries = {} cache_minder = fresh_inductor_cache(cache_entries) try: with cache_minder: return fn(*args, **kwargs) finally: dump_cache = False if dump_cache and is_cold_start: output_csv( output_filename[:-4] + "_triton_cache.csv", ["dev", "name", "batch_size", "triton_cache"], [ current_device, current_name, current_batch_size, cache_entries, ], ) return inner @contextmanager def maybe_init_distributed(should_init_distributed, port="6789", rank=0, world_size=1): # To avoid multiple inheritance from _dynamo.test_case.TestCase and MultiProcessTestCase, # Just manually implement the most important part of the dynamo behavior to reset/clear. try: if should_init_distributed: torch.cuda.set_device(rank) os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = port torch.distributed.init_process_group( "nccl", rank=rank, world_size=world_size ) yield finally: if should_init_distributed: torch.distributed.destroy_process_group() class BenchmarkRunner: def __init__(self): self.model_iter_fn = None self.grad_scaler = DummyGradScaler() self.autocast = NullContext self.optimizer = None self._args = None def setup_amp(self): if self.args.amp and self.args.training and self.args.devices == ["cuda"]: # AMP training can lead to small loss values which can undeflow # gradient values returning in zero gradients. To solve this # problem, PyTorch introduces GradScaler. GradScaler is a stateful # structure, that scales the loss values to prevent underflow. Loss # values are big at the beginning of training (therefore not # requiring scaling), while loss value tends to be small as network # starts getting better (requiring scaling). GradScaler manages all # of this fine tuning, checking the gradients are turning to inf, # discarding such batches. # Since we are not running a long iteration, default value of # init_scale 65536 is going to turn all gradients to inf. Therefore, # we just use a init_scale of 2.0 for benchmarking purpose. # Disabling Gradscaler because # 1) Benchmark setup runs 2 iterations of fwd-bwd. So, not useful. # 2) Current setup shares grad_scaler for eager and dynamo model, # which is bad as Gradscaler has state and can adjust the scaling # factor between eager and dynamo run, making accuracy check # harder. # self.grad_scaler = torch.cuda.amp.GradScaler(init_scale=2.0) self.autocast = torch.cuda.amp.autocast elif self.args.bfloat16 and self.args.devices == ["cpu"]: self.autocast = torch.cpu.amp.autocast def init_optimizer(self, name, device, params): if device == "cuda" and self.args.training and name not in CI_SKIP_OPTIMIZER: self.optimizer = torch.optim.SGD(params, lr=0.01) else: self.optimizer = None @property def args(self): return self._args @args.setter def args(self, args): self._args = args @property def skip_models(self): return set() @property def slow_models(self): return set() @property def very_slow_models(self): return set() @property def non_deterministic_models(self): return set() @property def skip_not_suitable_for_training_models(self): return set() @property def failing_torchinductor_models(self): return set() @property def failing_fx2trt_models(self): return set() @property def failing_dynamic_shape_models(self): return set() @property def skip_accuracy_checks_large_models_dashboard(self): return set() @property def get_tolerance_and_cosine_flag(self, is_training, current_device, name): raise NotImplementedError() @property def equal_nan(self): equal_nan = True if self.args.float32: equal_nan = False return equal_nan def iter_models(self, args): for model_name in self.iter_model_names(args): for device in args.devices: try: yield self.load_model( device, model_name, batch_size=args.batch_size, ) except NotImplementedError: continue # bad benchmark implementation def validate_model(self, model, example_inputs): """ Runs the eager model with example inputs to ensure that eager passes. """ model = copy.deepcopy(model) example_inputs = clone_inputs(example_inputs) if self.args.float32: model, example_inputs = cast_to_fp32(model, example_inputs) elif self.args.float16: model, example_inputs = cast_to_fp16(model, example_inputs) elif self.args.bfloat16: model, example_inputs = cast_to_bf16(model, example_inputs) try: self.model_iter_fn(model, example_inputs) except Exception as e: raise NotImplementedError("Eager model failed to run") from e def maybe_cast(self, model, example_inputs): model = copy.deepcopy(model) example_inputs = clone_inputs(example_inputs) if self.args.float32: model, example_inputs = cast_to_fp32(model, example_inputs) elif self.args.float16: model, example_inputs = cast_to_fp16(model, example_inputs) elif self.args.bfloat16: model, example_inputs = cast_to_bf16(model, example_inputs) return model, example_inputs def decay_batch_exp(self, batch_size, factor=0.5, divisor=2): out_batch_size = batch_size * factor if out_batch_size > divisor: out_batch_size = (out_batch_size + 1) // divisor * divisor else: out_batch_size = batch_size - 1 return max(0, int(out_batch_size)) def batch_size_finder(self, device, model_name, initial_batch_size=1024): batch_size = initial_batch_size while batch_size >= 1: torch.cuda.empty_cache() try: device, name, model, example_inputs, _ = self.load_model( device, model_name, batch_size, ) self.model_iter_fn(model, example_inputs) return batch_size except RuntimeError as e: error_str = str(e) if "channels_last" in error_str: break batch_size = self.decay_batch_exp(batch_size) return 1 def run_n_iterations(self, mod, inputs): n = self.args.iterations for _ in range(n - 1): self.model_iter_fn(mod, inputs, collect_outputs=False) return self.model_iter_fn(mod, inputs, collect_outputs=True) def optimizer_zero_grad(self, mod): if self.optimizer is not None: self.optimizer.zero_grad(True) else: mod.zero_grad(True) def optimizer_step(self): if self.optimizer is not None: self.optimizer.step() def get_benchmark_indices(self, length): start = self._args.partition_id * (length // self._args.total_partitions) end = ( (self._args.partition_id + 1) * (length // self._args.total_partitions) if self._args.partition_id < self._args.total_partitions - 1 else length ) return start, end def check_accuracy( self, name, model, example_inputs, optimize_ctx, experiment, tag ): """ Checks accuracy. 1) Collect the outputs with fp64 datatype. This is useful for error checking. 2) Checks if eager itself has variations. """ start_stats = get_dynamo_stats() def record_status(accuracy_status, dynamo_start_stats): """ Records the status in the csv file """ if current_name in self.non_deterministic_models: if accuracy_status in ("pass", "eager_variation", "fail_accuracy"): accuracy_status = "pass" headers = ["dev", "name", "batch_size", "accuracy"] fields = [current_device, current_name, current_batch_size, accuracy_status] if tag is not None: headers.insert(3, "tag") fields.insert(3, tag) dynamo_stats = get_dynamo_stats() dynamo_stats.subtract(dynamo_start_stats) for k, v in dynamo_stats.items(): headers.append(k) fields.append(v) output_csv(output_filename, headers, fields) return "PASS" if accuracy_status in ("pass", "pass_due_to_skip") else "FAIL" if name in self.skip_accuracy_checks_large_models_dashboard: return record_status("pass_due_to_skip", dynamo_start_stats=start_stats) def deepcopy_and_maybe_ddp(model): model = copy.deepcopy(model) if self.args.ddp: model = DDP(model, find_unused_parameters=True) elif self.args.fsdp: model = FSDP(model, use_orig_params=True) if torch._inductor.config.triton.cudagraphs: log.warning("Disabling cudagraphs for FSDP compatibility") torch._inductor.config.triton.cudagraphs = False return model # Collect the fp64 reference outputs to be used later for accuracy checking. fp64_outputs = None try: model_fp64, inputs_fp64 = cast_to_fp64( deepcopy_and_maybe_ddp(model), clone_inputs(example_inputs), ) self.init_optimizer(name, current_device, model_fp64.parameters()) fp64_outputs = self.run_n_iterations(model_fp64, inputs_fp64) except Exception: log.warning( f"fp64 golden ref were not generated for {name}. Setting accuracy check to cosine" ) self.args.cosine = True fp64_outputs = None if self.args.ci and self.args.training: return record_status("fp64_OOM") tolerance, cos_similarity = self.get_tolerance_and_cosine_flag( self.args.training, current_device, name ) # Cast the model to float16/float32 as necessary model, example_inputs = self.maybe_cast(model, example_inputs) accuracy_status = "pass" with self.pick_grad(name, self.args.training): # Get results of native pytorch reset_rng_state() model_copy = deepcopy_and_maybe_ddp(model) self.init_optimizer(name, current_device, model_copy.parameters()) correct_result = self.run_n_iterations( model_copy, clone_inputs(example_inputs) ) # Rerun native pytorch reset_rng_state() model_copy = deepcopy_and_maybe_ddp(model) self.init_optimizer(name, current_device, model_copy.parameters()) correct_rerun_result = self.run_n_iterations( model_copy, clone_inputs(example_inputs) ) # Two eager runs should have exactly same result if not same( correct_result, correct_rerun_result, fp64_ref=None, cos_similarity=False, tol=0, equal_nan=self.equal_nan, ): accuracy_status = "eager_variation" return record_status(accuracy_status, dynamo_start_stats=start_stats) correct_rerun_result = None # Run with Dynamo # Sometime CI fails with random triton compilation failure which will be skipped for now # TODO: revisit this after switching to new Triton runtime reset_rng_state() torch._dynamo.reset() try: model_copy = deepcopy_and_maybe_ddp(model) self.init_optimizer(name, current_device, model_copy.parameters()) optimized_model_iter_fn = optimize_ctx(self.run_n_iterations) new_result = optimized_model_iter_fn(model_copy, example_inputs) except Exception as e: log.exception(e) if ( self.args.ci and isinstance(e, BackendCompilerFailed) and ( "Internal Triton PTX codegen error" in str(e) or "cubin" in str(e) ) ): accuracy_status = "pass_due_to_skip" return record_status( accuracy_status, dynamo_start_stats=start_stats ) else: print( "TorchDynamo optimized model failed to run because of following error" ) accuracy_status = "fail_to_run" return record_status( accuracy_status, dynamo_start_stats=start_stats ) if not same( correct_result, new_result, fp64_outputs, equal_nan=self.equal_nan, cos_similarity=cos_similarity, tol=tolerance, ): if self.args.skip_accuracy_check: accuracy_status = "pass_due_to_skip" else: accuracy_status = "fail_accuracy" return record_status(accuracy_status, dynamo_start_stats=start_stats) return record_status(accuracy_status, dynamo_start_stats=start_stats) def run_performance_test( self, name, model, example_inputs, optimize_ctx, experiment, tag=None ): def warmup(fn, model, example_inputs, mode, niters=5): peak_mem = 0 start_stats = get_dynamo_stats() try: if current_device == "cuda": torch.cuda.reset_peak_memory_stats() torch.cuda.empty_cache() t0 = time.perf_counter() for _ in range(niters): fn(model, example_inputs) t1 = time.perf_counter() latency = t1 - t0 if current_device == "cuda": peak_mem = get_peak_memory() elif current_device == "cpu": total = psutil.virtual_memory().total percentage = psutil.Process(os.getpid()).memory_percent() peak_mem = percentage * total / 10**9 except Exception: log.exception(f"Backend {mode} failed in warmup()") return sys.exit(-1) dynamo_stats = get_dynamo_stats() dynamo_stats.subtract(start_stats) return latency, peak_mem, dynamo_stats # Cast the model to float16/float32 as necessary model, example_inputs = self.maybe_cast(model, example_inputs) self.init_optimizer(name, current_device, model.parameters()) with self.pick_grad(name, self.args.training): ok, total = Stats.reset_counters() experiment_kwargs = {} if tag is not None: experiment_kwargs["tag"] = tag results = [] eager_latency, eager_peak_mem, _ = warmup( self.model_iter_fn, model, example_inputs, "eager" ) optimized_model_iter_fn = optimize_ctx(self.model_iter_fn) dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup( optimized_model_iter_fn, model, example_inputs, "dynamo" ) compilation_time = dynamo_latency - eager_latency compression_ratio = ( eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0 ) # print( # f"memory: eager: {eager_peak_mem:.2f} GB, " # f"dynamo: {dynamo_peak_mem:.2f} GB, " # f"ratio: {compression_ratio:.2f}" # ) if experiment.func is speedup_experiment: experiment_kwargs["compilation_latency"] = compilation_time experiment_kwargs["compression_ratio"] = compression_ratio experiment_kwargs["eager_peak_mem"] = eager_peak_mem experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem experiment_kwargs["dynamo_stats"] = dynamo_stats if experiment.func is coverage_experiment: ok, total = Stats.reset_counters() results = [] # run with torch._dynamo few times to populate the cache for _ in range(3): optimized_model_iter_fn(model, example_inputs) _, frames_second_pass = Stats.reset_counters() # should be 0 if frames_second_pass > 0: optimized_model_iter_fn(model, example_inputs) _, frames_third_pass = Stats.reset_counters() # should be 0 else: frames_third_pass = 0 results.append( f"{ok:3}/{total:3} +{frames_third_pass} frames {compilation_time:3.0f}s" ) if not hasattr(model, name): model.name = name results.append(experiment(model, example_inputs, **experiment_kwargs)) return " ".join(map(str, results)) def run_one_model( self, name, model, example_inputs, optimize_ctx, experiment, explain=False, tag=None, ): mode = "train" if self.args.training else "eval" msg = f"{current_device:4} {mode:5} {current_name:34} " if tag: msg += f" {tag:26}" print(msg, end=" ", flush=True) start_stats = get_dynamo_stats() if self.args.accuracy: status = self.check_accuracy( name, model, example_inputs, optimize_ctx, experiment, tag ) print(status) elif self.args.performance: status = self.run_performance_test( name, model, example_inputs, optimize_ctx, experiment, tag ) print(status) if self.args.timing: from torch._dynamo.utils import op_count, print_time_report from torch.utils._stats import simple_call_counter print_time_report() stats = "STATS: " stats = stats + " | ".join( itertools.chain( [f"call_* op count: {op_count}"], (f"{key}:{value}" for key, value in simple_call_counter.items()), ) ) print(stats) stats = get_dynamo_stats() stats.subtract(start_stats) if explain: print( f"Dynamo produced {stats['unique_graphs']} graphs " f"covering {stats['calls_captured']} ops with " f"{stats['graph_breaks']} graph breaks ({stats['unique_graph_breaks']} unique)" ) def help(fn): return fn.__doc__ diff_branch_default = "DIFF-BRANCH-DEFAULT" def should_diff_branch(args): return args.diff_branch != diff_branch_default def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument( "--filter", "-k", action="append", help="filter benchmarks with regexp" ) parser.add_argument( "--exclude", "-x", action="append", help="filter benchmarks with regexp" ) parser.add_argument( "--exclude-exact", action="append", help="filter benchmarks with exact match" ) parser.add_argument( "--total-partitions", type=int, default=1, choices=range(1, 10), help="Total number of partitions we want to divide the benchmark suite into", ) parser.add_argument( "--partition-id", type=int, default=0, help="ID of the benchmark suite partition to be run. Used to divide CI tasks", ) parser.add_argument( "--devices", "--device", "-d", action="append", help="cpu or cuda" ) parser.add_argument("--device-index", help="CUDA device index") parser.add_argument( "--repeat", "-n", type=int, default=30, help="number of timing runs" ) iterations_per_run_help = """ Run this may iterations for each time measurement. This is mainly used for XLA training. We want to run multiple iterations per measurement so the tracing and computation for different iteartions can overlap with each other. This makes sure we have an accurate xla baseline. """ parser.add_argument( "--iterations-per-run", type=int, default=1, help=iterations_per_run_help ) parser.add_argument( "--randomize-input", action="store_true", help="Whether to randomize the input values. Dimensions will be kept the same.", ) parser.add_argument( "--threads", "-t", type=int, help="number of threads to use for eager and inductor", ) parser.add_argument( "--nopython", action="store_true", help="Turn graph breaks into errors" ) parser.add_argument( "--no-skip", action="store_true", help="run models that are in the global SKIP list", ) parser.add_argument( "--prims-nvfuser", action="store_true", help="user prims + nvfuser backend" ) parser.add_argument( "--dump-raw-metrics", action="store_true", help="dump raw timing metrics from speedup experiment", ) parser.add_argument( "--log-operator-inputs", action="store_true", default=False, ) parser.add_argument( "--channels-last", action="store_true", default=False, help="use channels last format", ) parser.add_argument( "--batch-size", "--batch_size", type=int, help="batch size for benchmarking" ) parser.add_argument( "--iterations", type=int, default=2, help="how many iterations to run" ) parser.add_argument( "--batch-size-file", type=str, help="String to load batch size from" ) parser.add_argument("--cosine", action="store_true", help="use cosine similarity") parser.add_argument( "--ci", action="store_true", help="Flag to tell that its a CI run" ) parser.add_argument( "--dynamic-ci-skips-only", action="store_true", help=( "Run only the models that would have been skipped in CI " "if dynamic-shapes, compared to running without dynamic-shapes. " "This is useful for checking if more models are now " "successfully passing with dynamic shapes. " "Implies --dynamic-shapes and --ci" ), ) parser.add_argument( "--dashboard", action="store_true", help="Flag to tell that its a Dashboard run" ) parser.add_argument( "--skip-fp64-check", action="store_true", help="skip accuracy check using fp64" ) parser.add_argument( "--fast", "-f", action="store_true", help="skip slow benchmarks" ) parser.add_argument( "--only", help="""Run just one model from torchbench. Or specify the path and class name of the model in format like: --only=path:,class: Due to the fact that dynamo changes current working directory, the path should be an absolute path. The class should have a method get_example_inputs to return the inputs for the model. An example looks like ``` class LinearModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(10, 10) def forward(self, x): return self.linear(x) def get_example_inputs(self): return (torch.randn(2, 10),) ``` """, ) parser.add_argument( "--training", action="store_true", help="Performs training", ) parser.add_argument( "--ddp", action="store_true", help="Wraps model in DDP before running it, and uses dynamo DDPOptmizer (graph breaks) by default.", ) parser.add_argument( "--fsdp", action="store_true", help="""Wraps model in FSDP before running it. Disables cudagraphs by default. Doesn't recursively wrap, mainly useful for checking dynamo UnspecNNModule compatibility """, ) parser.add_argument( "--no-optimize-ddp", action="store_true", help="Disables dynamo DDPOptimizer (graph breaks). (Applies only when using --ddp benchmark mode).", ) parser.add_argument( "--distributed-master-port", default="6789", help="Port to bind for for torch.distributed. Use the default unless it's conflicting with another user", ) parser.add_argument( "--dynamic-shapes", action="store_true", help="Runs a dynamic shapes version of the benchmark, if available.", ) parser.add_argument( "--specialize-int", action="store_true", help="Run with specialize_int=True." ) parser.add_argument( "--use-eval-mode", action="store_true", help="sets model.eval() to reduce randomness", ) parser.add_argument( "--skip-accuracy-check", action="store_true", help="keeps running even when accuracy fails", ) parser.add_argument( "--generate-aot-autograd-stats", action="store_true", help="Generates AOT Autograd stats like how mnay graphs are sent to AOT", ) parser.add_argument( "--inductor-settings", action="store_true", help="Use same settings as --inductor for baseline comparisons", ) parser.add_argument( "--suppress-errors", action="store_true", help="Suppress errors instead of raising them", ) parser.add_argument( "--output", help="Overrides the output filename", ) parser.add_argument( "--output-directory", help="Overrides the directory to place output files.", ) parser.add_argument( "--part", default=None, help="Specify the part of the model to run.", ) parser.add_argument( "--export-profiler-trace", action="store_true", help="exports trace of kineto profiler", ) parser.add_argument( "--profiler-trace-name", "--profiler_trace_name", help="Overwrites exported trace name", ) parser.add_argument( "--diff-branch", default=diff_branch_default, help="delta current branch against given branch.", ) parser.add_argument( "--tag", default=None, help="Specify a tag to be included in csv files." ) parser.add_argument( "--explain", action="store_true", help="print some graph/op statistics during the run, similar to .explain()", ) parser.add_argument( "--cold-start-latency", "--cold_start_latency", action="store_true", help="Use a fresh triton cachedir when running each model, to force cold-start compile.", ) parser.add_argument( "--disable-cudagraphs", action="store_true", help="Disables cudagraphs for Inductor", ) parser.add_argument( "--print-graph-breaks", action="store_true", help="Show a warning whenever graph break", ) parser.add_argument( "--trace-on-xla", action="store_true", help="Whether to trace the model on XLA or on eager device", ) parser.add_argument( "--xla-tolerance", type=float, default=1e-2, help="XLA needs a loose tolerance to pass the correctness check", ) parser.add_argument( "--collect-outputs", action="store_true", help="""Whether to collect outputs for training. Set this to true if we want to verify the numerical correctness of graidents. But that may cause time measurement not accurate""", ) parser.add_argument("--timing", action="store_true", help="Emits phase timing") parser.add_argument( "--progress", action="store_true", help="Print n/k models message between each model run.", ) parser.add_argument( "--timeout", type=int, default=1800, help="timeout (second) for benchmarking.", ) parser.add_argument( "--per_process_memory_fraction", type=float, default=1, help="Set per-process GPU memory fraction (limit) for reducing usable size and reproducing OOMs", ) group_fuser = parser.add_mutually_exclusive_group() # --nvfuser is now the default, keep the option to not break scripts group_fuser.add_argument("--nvfuser", action="store_true", help=argparse.SUPPRESS) group_fuser.add_argument("--nnc", action="store_true", help="enable NNC for GPUs") group_prec = parser.add_mutually_exclusive_group() group_prec.add_argument("--float16", action="store_true", help="cast model to fp16") group_prec.add_argument( "--bfloat16", action="store_true", help="cast model to bf16" ) group_prec.add_argument("--float32", action="store_true", help="cast model to fp32") group_prec.add_argument( "--amp", action="store_true", help="use automatic mixed precision" ) group_printout = parser.add_mutually_exclusive_group() group_printout.add_argument( "--verbose", "-v", action="store_true", help="enable verbose debug printouts" ) group_printout.add_argument( "--quiet", "-q", action="store_true", help="suppress debug printouts" ) group = parser.add_mutually_exclusive_group() group.add_argument( "--coverage", action="store_true", help="(default) " + help(coverage_experiment) ) group.add_argument( "--overhead", action="store_true", help=help(overhead_experiment) ) group.add_argument( "--speedup-dynamo-ts", action="store_true", help="TorchDynamo frontend with torchscript backend", ) group.add_argument( "--speedup-fx2trt", action="store_true", help=help(speedup_experiment_fx2trt) ) group.add_argument( "--speedup-fx2trt-fp16", action="store_true", help=help(speedup_experiment_fx2trt), ) group.add_argument( "--print-fx", action="store_true", help="Print fx traces captured from model", ) group.add_argument( "--print-aten-ops", action="store_true", help="Print traces of aten ops captured by AOT autograd", ) group.add_argument( "--inductor", action="store_true", help="Measure speedup with TorchInductor", ) group.add_argument( "--backend", choices=torch._dynamo.list_backends(exclude_tags=None), help="measure speedup with a given backend", ) group.add_argument("--nothing", action="store_true", help=help(null_experiment)) group.add_argument( "--log-conv-args", action="store_true", help="Dump convolution input/weight/bias's shape/stride/dtype and other options to json", ) group.add_argument( "--recompile-profiler", "--recompile_profiler", action="store_true", help="Run the dynamo recompilation profiler on each model.", ) group.add_argument( "--find-batch-sizes", action="store_true", help="finds the largest batch size that could fit on GPUs", ) mode_group = parser.add_mutually_exclusive_group(required=True) mode_group.add_argument( "--accuracy", action="store_true", help="Checks accuracy with small batch size and eval mode", ) mode_group.add_argument( "--performance", action="store_true", help="Measures performance speedup" ) return parser.parse_args(args) def main(runner, original_dir=None): if original_dir: os.chdir(original_dir) args = parse_args() if should_diff_branch(args): import git # We do this here so we error out earlier if there's an issue repo = git.Repo() if repo.is_dirty(): raise RuntimeError( "--diff-branch called on dirty branch. Commit, stash, or reset." ) main_branch = repo.active_branch.name if main_branch == args.diff_branch: raise RuntimeError( f"--diff-branch: current branch is same as {args.diff_branch} branch, what are you diffing?" ) with maybe_init_distributed( (args.ddp or args.fsdp) and args.only, port=args.distributed_master_port ): return maybe_fresh_cache( run, (args.cold_start_latency and args.only) or args.ci )(runner, args, original_dir) def run(runner, args, original_dir=None): # Pass the parsed args object to benchmark runner object runner.args = args args.filter = args.filter or [r"."] args.exclude = args.exclude or [r"^$"] args.exclude_exact = args.exclude_exact or [] if args.inductor: assert args.backend is None args.backend = "inductor" if args.dynamic_ci_skips_only: args.dynamic_shapes = True args.ci = True if args.dynamic_shapes: torch._dynamo.config.dynamic_shapes = True if args.specialize_int: torch._dynamo.config.specialize_int = True if args.ci: if args.inductor and args.accuracy: torch._inductor.config.compile_threads = 1 if args.accuracy: # Run fewer iterations when checking accuracy args.repeat = 2 if args.dynamic_ci_skips_only: # Test only the incremental set of jobs whose skipped was # caused solely by turning on dynamic shapes assert args.dynamic_shapes ci = functools.partial(CI, args.backend, training=args.training) args.filter = list( set(CI_SKIP[ci(dynamic=True)]) - set(CI_SKIP[ci(dynamic=False)]) ) else: ci = functools.partial( CI, args.backend, training=args.training, dynamic=args.dynamic_shapes ) for device in args.devices: args.exclude_exact.extend(CI_SKIP[ci(device=device)]) if args.ddp: # TODO: we could also hook DDP bench up to --speedup bench, _not_ for mgpu e2e perf, # but just to measure impact on singlenode of performing graph-breaks. # Left it as a follow up to keep this PR isolated. assert ( args.accuracy ), "DDP benchmark is currently only hooked up to --accuracy bench" assert args.training, "DDP benchmark requires --training mode" if args.no_optimize_ddp: torch._dynamo.config.optimize_ddp = False else: # TODO(whc) after enabling DDPOptimizer by default this could be removed or assert torch._dynamo.config.optimize_ddp = True if args.only == "dlrm": log.error( "DLRM+DDP is unsupported as it requires sharding the embedding layer separately from DDP" ) return sys.exit(-1) if args.accuracy: # Use small batch size. We use >1 batch size to ensure we test # batch_norm type of operators that work on batch dims. # TODO - Go through the failures for batch size = 2 if args.batch_size is None: if runner.suite_name == "huggingface": args.batch_size = 1 elif runner.suite_name == "torchbench": args.batch_size = 4 else: # Larger batch size of TIMM models to have stable batch_norm assert runner.suite_name == "timm_models" args.batch_size = 8 # Remove sources of randomness if runner.suite_name != "timm_models": # TODO - Using train mode for timm_models. Move to train mode for HF and Torchbench as well. args.use_eval_mode = True inductor_config.fallback_random = True if args.only is not None and args.only not in { "alexnet", "Background_Matting", "pytorch_CycleGAN_and_pix2pix", "pytorch_unet", "Super_SloMo", "vgg16", "vision_maskrcnn", }: # some of the models do not support use_deterministic_algorithms torch.use_deterministic_algorithms(True) os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" torch.backends.cudnn.deterministic = True torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = False # Remove randomeness when torch manual seed is called patch_torch_manual_seed() # Some models e.g. yolov3 assert batch size on n_gpus if "CUDA_VISIBLE_DEVICES" not in os.environ: args.device_index = "0" # Stricter check to disable fallbacks args.suppress_errors = False if args.device_index is not None: os.environ["CUDA_VISIBLE_DEVICES"] = args.device_index elif args.performance: # Ensure that we test on real scenarios args.use_eval_mode = False if args.partition_id > args.total_partitions or args.partition_id < 0: print("Invalid partition id") return sys.exit(-1) if not args.devices: if torch.cuda.is_available(): args.devices = ["cuda"] else: log.warning("torch.cuda.is_available() == False, using CPU") args.devices = ["cpu"] if args.devices != ["cpu"] and torch.cuda.is_available(): global synchronize synchronize = torch.cuda.synchronize if ( args.devices == ["cuda"] and torch.cuda.get_device_properties(0).total_memory < 25 * 2**30 ): # OOM errors on an RTX 3090 with 24gb RAM runner.skip_models.update( { # torchbench "hf_Longformer", "timm_nfnet", "timm_efficientdet", # timm "beit_base_patch16_224", "cait_m36_384", "convmixer_768_32", "deit_base_distilled_patch16_224", "dm_nfnet_f0", "dpn107", "dm_nfnet_f0", } ) if args.training: runner.skip_models.add("hf_T5") if torch._dynamo.config.dynamic_shapes: # TODO(jansel): fix bugs in these runner.skip_models.update(runner.failing_dynamic_shape_models) if args.nnc: torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) torch._C._jit_set_texpr_fuser_enabled(True) torch._C._jit_set_nvfuser_enabled(False) if args.threads: torch.set_num_threads(args.threads) if args.verbose: torch._dynamo.config.log_level = logging.DEBUG if args.print_graph_breaks: torch._dynamo.config.print_graph_breaks = True if args.quiet: torch._dynamo.config.log_level = logging.ERROR torch._dynamo.config.suppress_errors = args.suppress_errors if args.training: runner.model_iter_fn = runner.forward_and_backward_pass runner.skip_models.update(runner.skip_not_suitable_for_training_models) else: runner.model_iter_fn = runner.forward_pass if args.fast: runner.skip_models.update(runner.slow_models) if args.devices == ["cpu"]: runner.skip_models.update(runner.very_slow_models) if args.inductor or args.inductor_settings: runner.skip_models.update(runner.failing_torchinductor_models) if args.float16: # TODO(jansel): check if correctness issue is real runner.skip_models.add("yolov3") if args.float16: # these give `INCORRECT - Variation in Eager runs itself` sometimes runner.non_deterministic_models.update( { "demucs", "pyhpc_equation_of_state", "timm_efficientdet", "pyhpc_isoneutral_mixing", "pyhpc_turbulent_kinetic_energy", "shufflenet_v2_x1_0", } ) if args.no_skip: runner.skip_models.clear() experiment = null_experiment global current_name, current_device, current_batch_size, output_filename, optimize_ctx optimize_ctx = NullContext() if args.overhead: optimize_ctx = torch._dynamo.optimize(dummy_fx_compile, nopython=args.nopython) experiment = speedup_experiment output_filename = "overheads.csv" elif args.inductor: inductor_config.debug = args.verbose if args.threads: inductor_config.cpp.threads = args.threads optimize_ctx = torch._dynamo.optimize("inductor", nopython=args.nopython) experiment = speedup_experiment output_filename = "inductor.csv" elif args.speedup_dynamo_ts: optimize_ctx = torch._dynamo.optimize("ts", nopython=args.nopython) experiment = speedup_experiment output_filename = "speedup_dynamo_ts.csv" elif args.prims_nvfuser: optimize_ctx = torch._dynamo.optimize("prims_nvfuser", nopython=args.nopython) experiment = speedup_experiment backend_str = "prims_nvfuser" output_filename = f"accuracy_aot_{backend_str}.csv" elif args.print_fx: optimize_ctx = torch._dynamo.optimize( print_fx, nopython=args.nopython, ) elif args.print_aten_ops: optimize_ctx = torch._dynamo.optimize( print_aten_ops, nopython=args.nopython, ) elif args.nothing: optimize_ctx = nothing output_filename = "nothing.csv" elif args.backend: optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython) experiment = speedup_experiment if args.accuracy: output_filename = f"accuracy_{args.backend}.csv" else: output_filename = f"speedup_{args.backend}.csv" elif args.recompile_profiler: output_filename = "recompile_profiler_log.csv" experiment = recompile_profiler_experiment else: optimize_ctx = torch._dynamo.optimize( fx_insert_profiling, nopython=args.nopython ) experiment = coverage_experiment output_filename = "coverage.csv" if args.inductor or args.backend == "inductor": inductor_config.triton.cudagraphs = not args.disable_cudagraphs runner.setup_amp() if args.output: output_filename = args.output if output_filename: if args.output_directory: output_filename = os.path.join(args.output_directory, output_filename) else: output_filename = os.path.join( torch._dynamo.config.base_dir, output_filename ) if args.find_batch_sizes and args.only: for device in args.devices: batch_size = runner.batch_size_finder(device, args.only) print(args.only, batch_size) output_csv(output_filename, [], [args.only, batch_size]) return if args.export_profiler_trace: if args.profiler_trace_name is None: if args.backend: args.profiler_trace_name = args.backend elif args.inductor: args.profiler_trace_name = "inductor" else: args.profiler_trace_name = "profile" else: args.profiler_trace_name = args.profiler_trace_name experiment = functools.partial(experiment, args, runner.model_iter_fn) if args.only and should_diff_branch(args): import git repo = git.Repo() main_branch = repo.active_branch.name try: # Adding diff-branch again to the args will override previous value call_args = ( [sys.executable] + sys.argv + [f"--diff-branch={diff_branch_default}"] ) # Run for main branch subprocess.check_call(call_args + [f"--tag={main_branch}"]) # Run for comparison branch repo.git.checkout(args.diff_branch) subprocess.check_call(call_args + [f"--tag={args.diff_branch}"]) finally: # Go back to main branch repo.git.checkout(main_branch) elif args.only: model_name = args.only for device in args.devices: batch_size = args.batch_size if args.batch_size_file: batch_size = read_batch_size_from_file( args, args.batch_size_file, model_name ) if model_specified_by_path(args.only): model, example_inputs = load_model_from_path(args.only) name = model.__class__.__name__ model = model.to(device=device) example_inputs = tree_map(lambda x: x.to(device=device), example_inputs) else: try: if args.part: ( device, name, model, example_inputs, batch_size, ) = runner.load_model( device, model_name, batch_size=batch_size, part=args.part ) else: ( device, name, model, example_inputs, batch_size, ) = runner.load_model(device, model_name, batch_size=batch_size) except NotImplementedError as e: print(e) import traceback print(traceback.format_exc()) logging.warning(f"{args.only} failed to load") continue # bad benchmark implementation if args.trace_on_xla: xla_dev = xm.xla_device() model = model.to(device=xla_dev) example_inputs = tree_map( lambda x: x.to(device=xla_dev), example_inputs ) current_name = name current_device = device current_batch_size = batch_size set_model_name(name) if args.float32: model, example_inputs = cast_to_fp32(model, example_inputs) elif args.float16: model, example_inputs = cast_to_fp16(model, example_inputs) elif args.bfloat16: model, example_inputs = cast_to_bf16(model, example_inputs) if args.log_operator_inputs: log_operator_inputs( model, example_inputs, runner.model_iter_fn, name, args ) continue if args.per_process_memory_fraction != 1: torch.cuda.set_per_process_memory_fraction( args.per_process_memory_fraction ) runner.run_one_model( name, model, example_inputs, optimize_ctx, experiment, explain=args.explain, tag=args.tag, ) if args.generate_aot_autograd_stats: stats_file = output_filename.split(".csv")[0] + "_stats.csv" output_csv( stats_file, ("dev", "name", "batch_size", "total_aot_graphs", "ok_aot_graphs"), [ current_device, current_name, current_batch_size, *Stats.aot_summary(), ], ) else: if output_filename and os.path.exists(output_filename): os.unlink(output_filename) if original_dir: os.chdir(original_dir) model_names = list(runner.iter_model_names(args)) nmodels = len(model_names) for i, name in enumerate(model_names): current_name = name placeholder_batch_size = 0 if args.progress: print(f"Running model {i+1}/{nmodels}", flush=True) def write_csv(): for device in args.devices: output_csv( output_filename, [], [device, name, placeholder_batch_size, 0.0] ) try: timeout = args.timeout if should_diff_branch(args): timeout *= 2 subprocess.check_call( [sys.executable] + sys.argv + [f"--only={name}"], timeout=timeout ) except subprocess.TimeoutExpired: print("TIMEOUT", file=sys.stderr) write_csv() except subprocess.SubprocessError: print("ERROR", file=sys.stderr) write_csv() print_summary(output_filename) def log_operator_inputs(model, example_inputs, model_iter_fn, name, args): mode = "training" if args.training else "eval" output = os.path.join(os.path.dirname(args.output), f"{name}_{mode}.txt") # TODO - add option for coalescing inputs over multiple runs if os.path.exists(output): print(f"Skipping {name}, {output} already exists") return print(f"Running {name}") operator_mode = OperatorInputsMode() fake_tensor_mode = FakeTensorMode() with torch._subclasses.fake_tensor.FakeCopyMode(fake_tensor_mode): model_fake = copy.deepcopy(model) example_inputs_fake = copy.deepcopy(example_inputs) try: with fake_tensor_mode, operator_mode: model_iter_fn(model_fake, example_inputs_fake, collect_outputs=False) except Exception as e: print(f"{name} failed to run with fake tensors, trying real. Exception: {e}") operator_mode = OperatorInputsMode() try: with operator_mode: model_iter_fn(model, example_inputs, collect_outputs=False) except Exception as e2: print(f"{name} failed to run with real. Exception: {e2}") raise print(f"Writing output to {output}") operator_mode.log_to_file(output) if __name__ == "__main__": raise RuntimeError( f"You shouldn't run {sys.argv[0]} directly, instead try timm_model.py, torchbench.py or hugginface.py" )