import unittest import torch import torch.utils.cpp_extension import onnx import caffe2.python.onnx.backend as c2 import numpy as np from test_pytorch_onnx_caffe2 import do_export class TestCustomOps(unittest.TestCase): def test_custom_add(self): op_source = """ #include torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) { return self + other; } static auto registry = torch::jit::RegisterOperators("custom_namespace::custom_add", &custom_add); """ torch.utils.cpp_extension.load_inline( name="custom_add", cpp_sources=op_source, is_python_module=False, verbose=True, ) class CustomAddModel(torch.nn.Module): def forward(self, a, b): return torch.ops.custom_namespace.custom_add(a, b) def symbolic_custom_add(g, self, other): return g.op('Add', self, other) from torch.onnx import register_custom_op_symbolic register_custom_op_symbolic('custom_namespace::custom_add', symbolic_custom_add, 9) x = torch.randn(2, 3, 4, requires_grad=False) y = torch.randn(2, 3, 4, requires_grad=False) model = CustomAddModel() onnxir, _ = do_export(model, (x, y)) onnx_model = onnx.ModelProto.FromString(onnxir) prepared = c2.prepare(onnx_model) caffe2_out = prepared.run(inputs=[x.cpu().numpy(), y.cpu().numpy()]) np.testing.assert_array_equal(caffe2_out[0], model(x, y).cpu().numpy()) if __name__ == '__main__': unittest.main()