#include #include #include #include #include #include template bool exactly_equal(at::Tensor left, T right) { return at::Scalar(left).to() == right; } template bool almost_equal(at::Tensor left, T right, T tolerance = 1e-4) { return std::abs(at::Scalar(left).to() - right) < tolerance; } #define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \ REQUIRE(tensor.device().type() == at::Device((device_), (index_)).type()); \ REQUIRE(tensor.device().index() == at::Device((device_), (index_)).index()); \ REQUIRE(tensor.dtype() == (type_)); \ REQUIRE(tensor.layout() == (layout_)) TEST_CASE("Tensor/ToDtype") { auto tensor = at::empty({3, 4}); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided); tensor = tensor.to(at::kInt); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided); tensor = tensor.to(at::kChar); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided); tensor = tensor.to(at::kDouble); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided); } // Not currently supported. // TEST_CASE("Tensor/ToLayout") { // auto tensor = at::empty({3, 4}); // REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided); // // tensor = tensor.to(at::kSparse); // REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kSparse); // // tensor = tensor.to(at::kStrided); // REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided); // } TEST_CASE("Tensor/ToDevice", "[cuda]") { auto tensor = at::empty({3, 4}); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided); tensor = tensor.to({at::kCUDA, 1}); REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided); tensor = tensor.to({at::kCUDA, 0}); REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided); tensor = tensor.to({at::kCUDA, 1}); REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided); tensor = tensor.to(at::Device(at::kCPU)); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided); } TEST_CASE("Tensor/ToDeviceAndDtype", "[cuda]") { auto tensor = at::empty({3, 4}); REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided); tensor = tensor.to({at::kCUDA, 1}, at::kInt); REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kInt, at::kStrided); } TEST_CASE("Tensor/ToOptionsRespectsRequiresGrad") { { auto tensor = torch::empty({3, 4}, at::requires_grad()); REQUIRE(tensor.requires_grad()); tensor = tensor.to(at::kDouble); REQUIRE(tensor.requires_grad()); } { auto tensor = torch::empty({3, 4}); REQUIRE(!tensor.requires_grad()); tensor = tensor.to(at::kDouble); REQUIRE(!tensor.requires_grad()); } } TEST_CASE("Tensor/ToDoesNotCopyWhenOptionsAreAllTheSame") { auto tensor = at::empty({3, 4}, at::kFloat); auto hopefully_not_copy = tensor.to(at::kFloat); REQUIRE(hopefully_not_copy.data() == tensor.data()); } TEST_CASE("Tensor/ContainsCorrectValueForSingleValue") { auto tensor = at::tensor(123); REQUIRE(tensor.numel() == 1); REQUIRE(tensor.dtype() == at::kInt); REQUIRE(tensor[0].toCInt() == 123); tensor = at::tensor(123.456f); REQUIRE(tensor.numel() == 1); REQUIRE(tensor.dtype() == at::kFloat); REQUIRE(almost_equal(tensor[0], 123.456f)); tensor = at::tensor(123.456); REQUIRE(tensor.numel() == 1); REQUIRE(tensor.dtype() == at::kDouble); REQUIRE(almost_equal(tensor[0], 123.456)); } TEST_CASE("Tensor/ContainsCorrectValuesForManyValues") { auto tensor = at::tensor({1, 2, 3}); REQUIRE(tensor.numel() == 3); REQUIRE(tensor.dtype() == at::kInt); REQUIRE(exactly_equal(tensor[0], 1)); REQUIRE(exactly_equal(tensor[1], 2)); REQUIRE(exactly_equal(tensor[2], 3)); tensor = at::tensor({1.5, 2.25, 3.125}); REQUIRE(tensor.numel() == 3); REQUIRE(tensor.dtype() == at::kDouble); REQUIRE(almost_equal(tensor[0], 1.5)); REQUIRE(almost_equal(tensor[1], 2.25)); REQUIRE(almost_equal(tensor[2], 3.125)); } TEST_CASE("Tensor/ContainsCorrectValuesForManyValuesVariable") { auto tensor = torch::tensor({1, 2, 3}); REQUIRE(tensor.is_variable()); REQUIRE(tensor.numel() == 3); REQUIRE(tensor.dtype() == at::kInt); REQUIRE(exactly_equal(tensor[0], 1)); REQUIRE(exactly_equal(tensor[1], 2)); REQUIRE(exactly_equal(tensor[2], 3)); tensor = torch::tensor({1.5, 2.25, 3.125}); REQUIRE(tensor.is_variable()); REQUIRE(tensor.numel() == 3); REQUIRE(tensor.dtype() == at::kDouble); REQUIRE(almost_equal(tensor[0], 1.5)); REQUIRE(almost_equal(tensor[1], 2.25)); REQUIRE(almost_equal(tensor[2], 3.125)); } TEST_CASE("Tensor/ContainsCorrectValuesWhenConstructedFromVector") { std::vector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; auto tensor = at::tensor(v); REQUIRE(tensor.numel() == v.size()); REQUIRE(tensor.dtype() == at::kInt); for (size_t i = 0; i < v.size(); ++i) { REQUIRE(exactly_equal(tensor[i], v.at(i))); } std::vector w = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 10.0}; tensor = at::tensor(w); REQUIRE(tensor.numel() == w.size()); REQUIRE(tensor.dtype() == at::kFloat); for (size_t i = 0; i < w.size(); ++i) { REQUIRE(almost_equal(tensor[i], w.at(i))); } } TEST_CASE("Tensor/UsesOptionsThatAreSupplied") { auto tensor = at::tensor(123, dtype(at::kFloat)) + 0.5; REQUIRE(tensor.numel() == 1); REQUIRE(tensor.dtype() == at::kFloat); REQUIRE(almost_equal(tensor[0], 123.5)); tensor = at::tensor({1.1, 2.2, 3.3}, dtype(at::kInt)); REQUIRE(tensor.numel() == 3); REQUIRE(tensor.dtype() == at::kInt); REQUIRE(tensor.layout() == at::kStrided); REQUIRE(exactly_equal(tensor[0], 1)); REQUIRE(exactly_equal(tensor[1], 2)); REQUIRE(exactly_equal(tensor[2], 3)); } TEST_CASE("FromBlob") { std::vector v = {1, 2, 3}; auto tensor = torch::from_blob(v.data(), v.size(), torch::kInt32); REQUIRE(tensor.is_variable()); REQUIRE(tensor.numel() == 3); REQUIRE(tensor[0].toCInt() == 1); REQUIRE(tensor[1].toCInt() == 2); REQUIRE(tensor[2].toCInt() == 3); }