#include #include #include #include #include #include #include #include #include #include #include #ifdef USE_NCCL #include #endif #include #include #include #include #include #include #include #include using namespace torch; THCState *state; //////////////////////////////////////////////////////////////////////////////// // CUDA management methods //////////////////////////////////////////////////////////////////////////////// void THCPModule_setDevice(int device) { THCudaCheck(cudaSetDevice(device)); } PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg) { HANDLE_TH_ERRORS THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice"); int64_t device = THPUtils_unpackLong(arg); torch::utils::cuda_lazy_init(); THCPModule_setDevice(device); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } PyObject * THCPModule_getDevice_wrap(PyObject *self, PyObject *noargs) { HANDLE_TH_ERRORS int device; torch::utils::cuda_lazy_init(); THCudaCheck(cudaGetDevice(&device)); return PyLong_FromLong(device); END_HANDLE_TH_ERRORS } PyObject * THCPModule_getDeviceCount_wrap(PyObject *self, PyObject *noargs) { HANDLE_TH_ERRORS //torch::utils::cuda_lazy_init(); return PyLong_FromLong(at::cuda::device_count()); END_HANDLE_TH_ERRORS } PyObject * THCPModule_set_run_yet_variable_to_false_wrap(PyObject *self, PyObject *noargs) { HANDLE_TH_ERRORS torch::utils::set_run_yet_variable_to_false(); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } PyObject * THCPModule_getCurrentStream_wrap( PyObject * /* unused */, PyObject *device_index) { HANDLE_TH_ERRORS THPUtils_assert( THPUtils_checkLong(device_index), "invalid argument to getCurrentStream"); int64_t device = THPUtils_unpackLong(device_index); return PyLong_FromUnsignedLongLong( at::cuda::getCurrentCUDAStream(device).pack()); END_HANDLE_TH_ERRORS } PyObject * THCPModule_getDefaultStream_wrap( PyObject * /* unused */, PyObject *device_index) { HANDLE_TH_ERRORS THPUtils_assert( THPUtils_checkLong(device_index), "invalid argument to getDefaultStream"); int64_t device = THPUtils_unpackLong(device_index); return PyLong_FromUnsignedLongLong( at::cuda::getDefaultCUDAStream(device).pack()); END_HANDLE_TH_ERRORS } PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *obj) { HANDLE_TH_ERRORS THPUtils_assert(PyLong_Check(obj), "invalid stream"); uint64_t bits = PyLong_AsUnsignedLongLong(obj); if (bits == static_cast(-1) && PyErr_Occurred()) { throw python_error(); } auto stream = at::cuda::CUDAStream::unpack(bits); int device; THCudaCheck(cudaGetDevice(&device)); if (device != stream.device_index()) { THCPModule_setDevice(stream.device_index()); } at::cuda::setCurrentCUDAStream(stream); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } PyObject * THCPModule_isDriverSufficient(PyObject *self, PyObject *noargs) { int count; cudaError_t err = cudaGetDeviceCount(&count); if (err == cudaErrorInsufficientDriver) { return PyBool_FromLong(0); } return PyBool_FromLong(1); } PyObject * THCPModule_getDriverVersion(PyObject *self, PyObject *noargs) { int driverVersion = -1; cudaError_t err = cudaDriverGetVersion(&driverVersion); if (err != cudaSuccess) { PyErr_Format(PyExc_RuntimeError, "Error calling cudaDriverGetVersion: %d %s", err, cudaGetErrorString(err)); return nullptr; } return PyLong_FromLong((int64_t) driverVersion); } PyObject * THCPModule_getCompiledVersion(PyObject *self, PyObject *noargs) { return PyLong_FromLong((long) CUDA_VERSION); } PyObject * THCPModule_cudaHostAllocator(PyObject *_unused, PyObject *noargs) { HANDLE_TH_ERRORS c10::Allocator* allocator = THCState_getCudaHostAllocator(state); return PyLong_FromVoidPtr(allocator); END_HANDLE_TH_ERRORS } PyObject * THCPModule_cudaSynchronize(PyObject *_unused, PyObject *noargs) { HANDLE_TH_ERRORS THCudaCheck(cudaDeviceSynchronize()); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } PyObject * THCPModule_cudaIPCCollect(PyObject *_unused, PyObject *noargs) { HANDLE_TH_ERRORS torch::CudaIPCCollect(); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles) { HANDLE_TH_ERRORS THPUtils_assert(THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'"); THC_sleep(LIBRARY_STATE THPUtils_unpackLong(cycles)); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } // We need to ensure that as long as a thread will NEVER loose the GIL as long as // it holds the CUDA mutex. Otherwise another thread might be scheduled and try to // e.g. allocate a new tensor which will cause a deadlock. It's enough to have a // single global, because it can be only set once (cudaMutex is not recursive) // by the thread that owns the mutex (obviously there can be only one such thread). static PyGILState_STATE cudaMutexGILState; PyObject * THCPModule_cudaLockMutex(PyObject *module, PyObject *noargs) { auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex(); // This has to be a busy loop because we **absolutely need to** hold the GIL // or it's a recipe for a deadlock otherwise (if we let other Python threads // run while we have the cudaMutex, but not the GIL, they might try to e.g. // free a CUDA tensor and acquire the cudaMutex without giving up the GIL, // because it happens deep within THC). while (true) { if (mutex->try_lock()) break; { AutoNoGIL no_gil; std::this_thread::sleep_for(std::chrono::microseconds(10)); } } cudaMutexGILState = PyGILState_Ensure(); Py_RETURN_NONE; } PyObject * THCPModule_cudaUnlockMutex(PyObject *module, PyObject *noargs) { auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex(); PyGILState_Release(cudaMutexGILState); mutex->unlock(); Py_RETURN_NONE; } PyObject * THCPModule_hasPrimaryContext(PyObject *_unused, PyObject *arg) { HANDLE_TH_ERRORS THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to has_primary_context"); int64_t device_index = static_cast(THPUtils_unpackLong(arg)); if (at::detail::getCUDAHooks().hasPrimaryContext(device_index)) { Py_RETURN_TRUE; } else { Py_RETURN_FALSE; } END_HANDLE_TH_ERRORS } PyObject * THCPModule_emptyCache(PyObject *_unused, PyObject *noargs) { HANDLE_TH_ERRORS c10::cuda::CUDACachingAllocator::emptyCache(); END_HANDLE_TH_ERRORS Py_RETURN_NONE; } PyObject * THCPModule_memoryStats(PyObject *_unused, PyObject *arg) { HANDLE_TH_ERRORS THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_allocated"); const int device = (int) THPUtils_unpackLong(arg); using c10::cuda::CUDACachingAllocator::StatType; using c10::cuda::CUDACachingAllocator::Stat; using c10::cuda::CUDACachingAllocator::StatArray; using c10::cuda::CUDACachingAllocator::DeviceStats; const auto statToDict = [](const Stat& stat) { py::dict dict; dict["current"] = stat.current; dict["peak"] = stat.peak; dict["allocated"] = stat.allocated; dict["freed"] = stat.freed; return dict; }; const auto statArrayToDict = [=](const StatArray& statArray) { const std::array(StatType::NUM_TYPES)> statTypeNames = { "all", "small_pool", "large_pool" }; py::dict dict; for (size_t i = 0; i < statTypeNames.size(); ++i) { dict[statTypeNames[i]] = statToDict(statArray[i]); } return dict; }; const DeviceStats stats = c10::cuda::CUDACachingAllocator::getDeviceStats(device); py::dict result; result["num_alloc_retries"] = stats.num_alloc_retries; result["num_ooms"] = stats.num_ooms; result["allocation"] = statArrayToDict(stats.allocation); result["segment"] = statArrayToDict(stats.segment); result["active"] = statArrayToDict(stats.active); result["inactive_split"] = statArrayToDict(stats.inactive_split); result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes); result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes); result["active_bytes"] = statArrayToDict(stats.active_bytes); result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes); return result.release().ptr(); END_HANDLE_TH_ERRORS } PyObject * THCPModule_resetAccumulatedMemoryStats(PyObject *_unused, PyObject *arg) { HANDLE_TH_ERRORS THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_accumulated_memory_stats"); const int device = (int) THPUtils_unpackLong(arg); c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device); END_HANDLE_TH_ERRORS Py_RETURN_NONE; } PyObject * THCPModule_resetPeakMemoryStats(PyObject *_unused, PyObject *arg) { HANDLE_TH_ERRORS THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats"); const int device = (int) THPUtils_unpackLong(arg); c10::cuda::CUDACachingAllocator::resetPeakStats(device); END_HANDLE_TH_ERRORS Py_RETURN_NONE; } PyObject * THCPModule_memorySnapshot(PyObject *_unused, PyObject *noargs) { HANDLE_TH_ERRORS using c10::cuda::CUDACachingAllocator::SegmentInfo; using c10::cuda::CUDACachingAllocator::BlockInfo; const auto segmentInfoToDict = [](const SegmentInfo& segmentInfo) { py::dict segmentDict; segmentDict["device"] = segmentInfo.device; segmentDict["address"] = segmentInfo.address; segmentDict["total_size"] = segmentInfo.total_size; segmentDict["allocated_size"] = segmentInfo.allocated_size; segmentDict["active_size"] = segmentInfo.active_size; segmentDict["segment_type"] = (segmentInfo.is_large ? "large" : "small"); py::list blocks; for (const auto& blockInfo : segmentInfo.blocks) { py::dict blockDict; blockDict["size"] = blockInfo.size; blockDict["state"] = (blockInfo.allocated ? "active_allocated" : (blockInfo.active ? "active_pending_free" : "inactive")); blocks.append(blockDict); } segmentDict["blocks"] = blocks; return segmentDict; }; const std::vector& snapshot = c10::cuda::CUDACachingAllocator::snapshot(); py::list result; for (const auto& segmentInfo : snapshot) { result.append(segmentInfoToDict(segmentInfo)); } return result.release().ptr(); END_HANDLE_TH_ERRORS } //////////////////////////////////////////////////////////////////////////////// // Cuda module initialization //////////////////////////////////////////////////////////////////////////////// static void bindCudaDeviceProperties(PyObject* module) { // Add class and method to torch.cuda auto m = py::handle(module).cast(); py::class_(m, "_CudaDeviceProperties") .def_readonly("name", &cudaDeviceProp::name) .def_readonly("major", &cudaDeviceProp::major) .def_readonly("minor", &cudaDeviceProp::minor) .def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard) .def_readonly("is_integrated", &cudaDeviceProp::integrated) .def_readonly("multi_processor_count", &cudaDeviceProp::multiProcessorCount) .def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem) .def("__repr__", [](const cudaDeviceProp &prop) { std::ostringstream stream; stream << "_CudaDeviceProperties(name='" << prop.name << "', major=" << prop.major << ", minor=" << prop.minor << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024) << "MB, multi_processor_count=" << prop.multiProcessorCount << ")"; return stream.str(); }); m.def("_get_device_properties", [](int device) -> cudaDeviceProp * { return at::cuda::getDeviceProperties(device); }, py::return_value_policy::reference); } // Callback for python part. Used for additional initialization of python classes static PyObject * THCPModule_initExtension(PyObject *self, PyObject *noargs) { HANDLE_TH_ERRORS state = at::globalContext().lazyInitCUDA(); auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda")); if (!m) throw python_error(); // Register Storage Python objects with DynamicTypes.cpp THCPDoubleStorage_postInit(m); THCPFloatStorage_postInit(m); THCPHalfStorage_postInit(m); THCPLongStorage_postInit(m); THCPIntStorage_postInit(m); THCPShortStorage_postInit(m); THCPCharStorage_postInit(m); THCPByteStorage_postInit(m); THCPBoolStorage_postInit(m); THCPBFloat16Storage_postInit(m); bool has_half = true; auto set_module_attr = [&](const char* name, PyObject* v) { // PyObject_SetAttrString doesn't steal reference. So no need to incref. if (PyObject_SetAttrString(m, name, v) < 0) { throw python_error(); } }; set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False); set_module_attr("has_half", has_half ? Py_True : Py_False); auto _state_cdata = THPObjectPtr(PyLong_FromVoidPtr(state)); if (!_state_cdata) throw python_error(); set_module_attr("_state_cdata", _state_cdata.get()); auto num_gpus = c10::cuda::device_count(); auto default_cuda_generators = PyTuple_New(static_cast(num_gpus)); for(int i = 0; i < num_gpus; i++) { auto gen = at::cuda::detail::getDefaultCUDAGenerator(i); auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen); // This reference is meant to be given away, so no need to incref here. PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen); } set_module_attr("default_generators", default_cuda_generators); bindCudaDeviceProperties(m); Py_RETURN_NONE; END_HANDLE_TH_ERRORS } #ifdef USE_NCCL #include void THCPModule_useNccl() { // Use NCCL to ensure that the symbols are loaded ncclUniqueId uniqueId; ncclGetUniqueId(&uniqueId); } #endif PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self, PyObject *noargs) { HANDLE_TH_ERRORS cublasHandle_t handle = THCState_getCurrentBlasHandle(state); return PyLong_FromVoidPtr(handle); END_HANDLE_TH_ERRORS } static struct PyMethodDef _THCPModule_methods[] = { {"_cuda_init", (PyCFunction)THCPModule_initExtension, METH_NOARGS, nullptr}, {"_cuda_setDevice", (PyCFunction)THCPModule_setDevice_wrap, METH_O, nullptr}, {"_cuda_getDevice", (PyCFunction)THCPModule_getDevice_wrap, METH_NOARGS, nullptr}, {"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, nullptr}, {"_cuda_set_run_yet_variable_to_false", (PyCFunction)THCPModule_set_run_yet_variable_to_false_wrap, METH_NOARGS, nullptr}, {"_cuda_getCurrentStream", (PyCFunction)THCPModule_getCurrentStream_wrap, METH_O, nullptr}, {"_cuda_getDefaultStream", (PyCFunction)THCPModule_getDefaultStream_wrap, METH_O, nullptr}, {"_cuda_getCurrentBlasHandle", (PyCFunction)THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, nullptr}, {"_cuda_setStream", (PyCFunction)THCPModule_setStream_wrap, METH_O, nullptr}, {"_cuda_isDriverSufficient", (PyCFunction)THCPModule_isDriverSufficient, METH_NOARGS, nullptr}, {"_cuda_getDriverVersion", (PyCFunction)THCPModule_getDriverVersion, METH_NOARGS, nullptr}, {"_cuda_getCompiledVersion", (PyCFunction)THCPModule_getCompiledVersion, METH_NOARGS, nullptr}, {"_cuda_hasPrimaryContext", (PyCFunction) THCPModule_hasPrimaryContext, METH_O, nullptr}, {"_cuda_emptyCache", (PyCFunction) THCPModule_emptyCache, METH_NOARGS, nullptr}, {"_cuda_memoryStats", (PyCFunction) THCPModule_memoryStats, METH_O, nullptr}, {"_cuda_resetAccumulatedMemoryStats", (PyCFunction) THCPModule_resetAccumulatedMemoryStats, METH_O, nullptr}, {"_cuda_resetPeakMemoryStats", (PyCFunction) THCPModule_resetPeakMemoryStats, METH_O, nullptr}, {"_cuda_memorySnapshot", (PyCFunction) THCPModule_memorySnapshot, METH_NOARGS, nullptr}, {"_cuda_cudaHostAllocator", (PyCFunction)THCPModule_cudaHostAllocator, METH_NOARGS, nullptr}, {"_cuda_synchronize", (PyCFunction)THCPModule_cudaSynchronize, METH_NOARGS, nullptr}, {"_cuda_ipc_collect", (PyCFunction)THCPModule_cudaIPCCollect, METH_NOARGS, nullptr}, {"_cuda_sleep", (PyCFunction)THCPModule_cudaSleep, METH_O, nullptr}, {"_cuda_lock_mutex", (PyCFunction)THCPModule_cudaLockMutex, METH_NOARGS, nullptr}, {"_cuda_unlock_mutex", (PyCFunction)THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr}, #ifdef USE_NCCL {"_nccl_version", (PyCFunction)THCPModule_nccl_version, METH_NOARGS, nullptr}, {"_nccl_unique_id", (PyCFunction)THCPModule_nccl_unique_id, METH_NOARGS, nullptr}, {"_nccl_init_rank", (PyCFunction)THCPModule_nccl_init_rank, METH_VARARGS, nullptr}, {"_nccl_reduce", (PyCFunction)THCPModule_nccl_reduce, METH_VARARGS, nullptr}, {"_nccl_all_reduce", (PyCFunction)THCPModule_nccl_all_reduce, METH_VARARGS, nullptr}, {"_nccl_broadcast", (PyCFunction)THCPModule_nccl_broadcast, METH_VARARGS, nullptr}, {"_nccl_all_gather", (PyCFunction)THCPModule_nccl_all_gather, METH_VARARGS, nullptr}, {"_nccl_reduce_scatter", (PyCFunction)THCPModule_nccl_reduce_scatter, METH_VARARGS, nullptr}, #endif {nullptr} }; PyMethodDef* THCPModule_methods() { return _THCPModule_methods; } namespace torch { namespace cuda { void initModule(PyObject *module) { python::initCommMethods(module); } }}