from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, model_helper, schema from caffe2.python.layers import layers from functools import partial import logging import numpy as np logger = logging.getLogger(__name__) class LayerModelHelper(model_helper.ModelHelperBase): """ Model helper for building models on top of layers abstractions. Each layer is the abstraction that is higher level than Operator. Layer is responsible for ownership of it's own parameters and can easily be instantiated in multiple nets possible with different sets of ops. As an example: one can easily instantiate predict and train nets from the same set of layers, where predict net will have subset of the operators from train net. """ def __init__(self, name, input_feature_schema, trainer_extra_schema): super(LayerModelHelper, self).__init__(name=name) self._layer_names = set() self._layers = [] # optimizer bookkeeping self.param_to_optim = {} self._default_optimizer = None self._loss = None self._output_schema = None # Connect Schema to self.net. That particular instance of schmea will be # use for generation of the Layers accross the network and would be used # for connection with Readers. self._input_feature_schema = schema.NewRecord( self.net, input_feature_schema ) self._trainer_extra_schema = schema.NewRecord( self.net, trainer_extra_schema ) self._metrics_schema = schema.Struct() self._init_global_constants() self.param_init_net = self.create_init_net('param_init_net') def add_metric_field(self, name, value): assert name not in self._metrics_schema.fields, ( "Try to add metric field twice: {}".format(name)) self._metrics_schema = self._metrics_schema + schema.Struct( (name, value) ) def add_global_constant(self, name, array=None, dtype=None, initializer=None): # This is global namescope for constants. They will be created in all # init_nets and there should be very few of them. assert name not in self.global_constants self.global_constants[name] = self.net.NextBlob(name) if array is not None: assert initializer is None,\ "Only one from array and initializer should be specified" if dtype is None: array = np.array(array) else: array = np.array(array, dtype=dtype) # TODO: make GivenTensor generic op_name = None if array.dtype == np.int32: op_name = 'GivenTensorIntFill' elif array.dtype == np.int64: op_name = 'GivenTensorInt64Fill' elif array.dtype == np.str: op_name = 'GivenTensorStringFill' else: op_name = 'GivenTensorFill' def initializer(blob_name): return core.CreateOperator(op_name, [], blob_name, shape=array.shape, values=array.flatten().tolist() ) else: assert initializer is not None self.global_constant_initializers.append( initializer(self.global_constants[name])) return self.global_constants[name] def _init_global_constants(self): self.global_constants = {} self.global_constant_initializers = [] self.add_global_constant('ONE', 1.0) self.add_global_constant('ZERO', 0.0) self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32') def _add_global_constants(self, init_net): for initializer_op in self.global_constant_initializers: init_net._net.op.extend([initializer_op]) def create_init_net(self, name): init_net = core.Net(name) self._add_global_constants(init_net) return init_net def next_layer_name(self, prefix): base_name = core.ScopedName(prefix) name = base_name index = 0 while name in self._layer_names: name = base_name + '_auto_' + str(index) index += 1 self._layer_names.add(name) return name def add_layer(self, layer): self._layers.append(layer) for param in layer.get_parameters(): assert isinstance(param.parameter, core.BlobReference) self.param_to_optim[str(param.parameter)] = param.optimizer # The primary value of adding everything to self.net - generation of the # operators right away, i.e. if error happens it'll be detected # immediately. Other then this - create_x_net should be called. layer.add_operators(self.net, self.param_init_net) return layer.get_output_schema() def get_parameter_blobs(self): param_blobs = [] for layer in self._layers: for param in layer.get_parameters(): param_blobs.append(param.parameter) return param_blobs @property def default_optimizer(self): return self._default_optimizer @default_optimizer.setter def default_optimizer(self, optimizer): self._default_optimizer = optimizer @property def input_feature_schema(self): return self._input_feature_schema @property def trainer_extra_schema(self): return self._trainer_extra_schema @property def metrics_schema(self): """ Returns the schema that represents model output that should be used for metric reporting. During the training/evaluation this schema will be appended to the schema that represents model output. """ return self._metrics_schema @property def output_schema(self): assert self._output_schema is not None return self._output_schema @output_schema.setter def output_schema(self, schema): assert self._output_schema is None self._output_schema = schema @property def loss(self): assert self._loss is not None return self._loss @loss.setter def loss(self, loss): assert self._loss is None self._loss = loss def __getattr__(self, layer): # TODO(amalevich): Add add support for ifbpy inline documentation if layers.layer_exists(layer): def wrapper(*args, **kwargs): return self.add_layer( layers.create_layer(layer, self, *args, **kwargs)) return wrapper elif core.IsOperator(layer): def wrapper(*args, **kwargs): def apply_operator(net, in_record, out_record): # TODO(amalevich): Switch to net.operator as soon as it gets # landed net.__getattr__(layer)(in_record.field_blobs(), out_record.field_blobs(), **kwargs) if 'name' not in kwargs: kwargs['name'] = layer return self.add_layer( layers.create_layer('Functional', self, *args, function=apply_operator, **kwargs)) return wrapper else: raise ValueError( "Tring to create non-registered layer: {0}".format(layer)) @property def layers(self): return self._layers # TODO(amalevich): Optimizer should not really in model. Move it out. # Copy over from another Helper def SgdOptim(self, base_lr=0.01, policy='fixed', **kwargs): return partial(self.Sgd, base_lr=base_lr, policy=policy, **kwargs) def AdagradOptim(self, alpha=0.01, epsilon=1e-4, **kwargs): return partial(self.Adagrad, alpha=alpha, epsilon=epsilon, **kwargs) def FtrlOptim(self, alpha=0.01, beta=1e-4, lambda1=0, lambda2=0, **kwargs): return partial(self.Ftrl, alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2, **kwargs) def _GetOne(self): return self.global_constants['ONE'] def Adagrad(self, net, param_init_net, param, grad, alpha, epsilon, sparse_dedup_aggregator=None, engine=''): if alpha <= 0: return param_square_sum = param_init_net.ConstantFill( [param], core.ScopedBlobReference(param + "_square_sum"), value=0.0 ) # Set learning rate to negative so that we can add the grad to param # directly later. lr = param_init_net.ConstantFill( [], core.ScopedBlobReference(param + "_lr"), value=-alpha) if isinstance(grad, core.GradientSlice): if sparse_dedup_aggregator: grad = net.DeduplicateGradientSlices( grad, aggregator=sparse_dedup_aggregator) net.SparseAdagrad( [param, param_square_sum, grad.indices, grad.values, lr], [param, param_square_sum], epsilon=epsilon, engine=engine ) else: net.Adagrad( [param, param_square_sum, grad, lr], [param, param_square_sum], epsilon=epsilon, engine=engine ) def Ftrl(self, net, param_init_net, param, grad, alpha, beta, lambda1, lambda2, sparse_dedup_aggregator=None, engine=''): if alpha <= 0: return nz = param_init_net.ConstantFill( [param], core.ScopedBlobReference(param + "_ftrl_nz"), extra_shape=[2], value=0.0 ) if isinstance(grad, core.GradientSlice): if sparse_dedup_aggregator: grad = net.DeduplicateGradientSlices( grad, aggregator=sparse_dedup_aggregator) net.SparseFtrl( [param, nz, grad.indices, grad.values], [param, nz], engine=engine, alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2 ) else: net.Ftrl( [param, nz, grad], [param, nz], engine=engine, alpha=alpha, beta=beta, lambda1=lambda1, lambda2=lambda2 ) def Sgd(self, net, param_init_net, param, grad, base_lr, policy, momentum=0.0, **kwargs): if (base_lr <= 0): return # Set learning rate to negative so that we can add the grad to param # directly later. # TODO(amalevich): Get rid of iter duplication if other parts are good # enough lr = net.LearningRate( [net.Iter([], 1)], core.ScopedBlobReference(param + "_lr"), base_lr=-base_lr, policy=policy, **kwargs ) if momentum > 0: momentum_data = param_init_net.ConstantFill( param, core.ScopedBlobReference(param + "_momentum"), value=0.) if isinstance(grad, core.GradientSlice): assert momentum == 0., "Doesn't support momentum for sparse" net.ScatterWeightedSum( [param, self._GetOne(), grad.indices, grad.values, lr], param ) else: if momentum > 0.: net.MomentumSGD( [grad, momentum_data, lr], [grad, momentum_data], momentum=momentum, nesterov=1) coeff = self._GetOne() else: coeff = lr net.WeightedSum( [param, self._GetOne(), grad, coeff], param )