from __future__ import absolute_import, division, print_function, unicode_literals import torch from ...modules.linear import Linear as NNLinear from ...._jit_internal import weak_module @weak_module class Linear(NNLinear): r""" A quantized linear module with quantized tensor as inputs and outputs. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to `torch.nn.Linear`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight: the non-learnable quantized weights of the module which are of shape :math:`(\text{out\_features}, \text{in\_features})`. bias: the non-learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized to zero. out_scale: `scale` parameter of output Quantized Tensor, type: float out_zero_point: `zero_point` parameter for output Quantized Tensor, type: long Examples:: >>> m = nn.quantized.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ['bias', 'in_features', 'out_features'] def __init__(self, in_features, out_features, bias=True): assert bias, 'nobias is not supported in Quantized Linear module yet' super(Linear, self).__init__(in_features, out_features, bias) del self.weight del self.bias qweight = torch._empty_affine_quantized( [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8) qbias = torch._empty_affine_quantized( [out_features], scale=1, zero_point=0, dtype=torch.qint32) self.register_buffer('_packed_weight', torch.ops.quantized.fbgemm_linear_prepack(qweight)) self.register_buffer('bias', qbias) self.register_buffer('out_scale', torch.Tensor([1])) self.register_buffer('out_zero_point', torch.Tensor([0])) @property def weight(self): return torch.ops.quantized.fbgemm_linear_unpack(self._packed_weight) @weight.setter def weight(self, w): self._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(w) def forward(self, x): Y_q = torch.ops.quantized.fbgemm_linear( x, self._packed_weight, self.bias, self.out_scale, self.out_zero_point) return Y_q def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'weight'] = torch.ops.quantized.fbgemm_linear_unpack(destination[prefix + '_packed_weight']) destination.pop(prefix + '_packed_weight') def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(state_dict[prefix + 'weight']) self.bias.copy_(state_dict[prefix + 'bias']) state_dict.pop(prefix + 'weight') state_dict.pop(prefix + 'bias') super()._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) return