import copy import torch def fuse_conv_bn_eval(conv, bn): assert(not (conv.training or bn.training)), "Fusion only for eval!" fused_conv = copy.deepcopy(conv) fused_conv.weight, fused_conv.bias = \ fuse_conv_bn_weights(fused_conv.weight, fused_conv.bias, bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias) return fused_conv def fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b): if conv_b is None: conv_b = bn_rm.new_zeros(bn_rm.shape) if bn_w is None: bn_w = torch.ones_like(bn_rm) if bn_b is None: bn_b = torch.zeros_like(bn_rm) bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps) conv_w = conv_w * (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1)) conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b return torch.nn.Parameter(conv_w), torch.nn.Parameter(conv_b)