# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core import numpy as np class ParameterTags(object): BIAS = 'BIAS' WEIGHT = 'WEIGHT' COMPUTED_PARAM = 'COMPUTED_PARAM' class ParameterType(object): DENSE = 'dense' SPARSE = 'sparse' class ParameterInfo(object): def __init__( self, param_id, param, key=None, shape=None, length=None, grad=None, blob_copy=None): assert isinstance(param, core.BlobReference) self.param_id = param_id self.name = str(param) self.blob = param self.key = key self.shape = shape self.size = None if shape is None else np.prod(shape) self.length = max(1, length if length is not None else 1) self.grad = grad self._cloned_init_net = None # Optionally store equivalent copies of the blob # in different precisions (i.e. half and float copies) # stored as a dict of TensorProto.DataType -> BlobReference self.blob_copy = blob_copy # each param_info can have its own optimizer. It can be set within # OptimizerContext (caffe2/python/optimizer.py) self._optimizer = None def grad_type(self): # self.grad could be None for model parallelism with parameter server if self.grad is None: return return ( ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice) else ParameterType.DENSE) @property def parameter(self): return self.blob @property def optimizer(self): return self._optimizer @optimizer.setter def optimizer(self, value): assert self._optimizer is None, "optimizer has already been set" self._optimizer = value def __str__(self): return self.name