from __future__ import absolute_import, division, print_function, unicode_literals import torch import copy import torch.nn.intrinsic.modules.fused as torch_fused def fuse_conv_bn(conv, bn): r"""Given the conv and bn modules, fuses them and returns the fused module Args: conv: Module instance of type conv2d bn: Spatial BN instance that needs to be fused with the conv Examples:: >>> m1 = nn.Conv2d(10, 20, 3) >>> b1 = nn.BatchNorm2d(20) >>> m2 = fuse_conv_bn(m1, b1) """ assert(conv.training == bn.training),\ "Conv and BN both must be in the same mode (train or eval)." if conv.training: assert conv.bias is None, 'Only support fusing Conv2d that does not have bias' assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d' assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True' assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True' return torch.nn.intrinsic.ConvBn2d(conv, bn) else: return torch.nn.utils.fuse_conv_bn_eval(conv, bn) def fuse_conv_bn_relu(conv, bn, relu): r"""Given the conv and bn modules, fuses them and returns the fused module Args: conv: Module instance of type conv2d bn: Spatial BN instance that needs to be fused with the conv Examples:: >>> m1 = nn.Conv2d(10, 20, 3) >>> b1 = nn.BatchNorm2d(20) >>> m2 = fuse_conv_bn(m1, b1) """ assert(conv.training == bn.training == relu.training),\ "Conv and BN both must be in the same mode (train or eval)." if conv.training: return torch_fused.ConvBnReLU2d(conv, bn, relu) else: return torch_fused.ConvReLU2d( torch.nn.utils.fusion.fuse_conv_bn_eval(conv, bn), relu) # Generalization of getattr def _get_module(model, submodule_key): tokens = submodule_key.split('.') cur_mod = model for s in tokens: cur_mod = getattr(cur_mod, s) return cur_mod # Generalization of setattr def _set_module(model, submodule_key, module): tokens = submodule_key.split('.') sub_tokens = tokens[:-1] cur_mod = model for s in sub_tokens: cur_mod = getattr(cur_mod, s) setattr(cur_mod, tokens[-1], module) def fuse_known_modules(mod_list): r"""Returns a list of modules that fuses the operations specified in the input module list. Fuses only the following sequence of modules: conv, bn conv, bn, relu conv, relu linear, relu For these sequences, the first element in the output module list performs the fused operation. The rest of the elements are set to nn.Identity() """ OP_LIST_TO_FUSER_METHOD = { (torch.nn.Conv2d, torch.nn.BatchNorm2d): fuse_conv_bn, (torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU): fuse_conv_bn_relu, (torch.nn.Conv2d, torch.nn.ReLU): torch.nn.intrinsic.ConvReLU2d, (torch.nn.Linear, torch.nn.ReLU): torch.nn.intrinsic.LinearReLU } types = tuple(type(m) for m in mod_list) fuser_method = OP_LIST_TO_FUSER_METHOD.get(types, None) if fuser_method is None: raise NotImplementedError("Cannot fuse modules: {}".format(types)) new_mod = [None] * len(mod_list) new_mod[0] = fuser_method(*mod_list) for i in range(1, len(mod_list)): new_mod[i] = torch.nn.Identity() new_mod[i].training = mod_list[0].training return new_mod def _fuse_modules(model, modules_to_fuse, fuser_func=fuse_known_modules): mod_list = [] for item in modules_to_fuse: mod_list.append(_get_module(model, item)) # Fuse list of modules new_mod_list = fuser_func(mod_list) # Replace original module list with fused module list for i, item in enumerate(modules_to_fuse): _set_module(model, item, new_mod_list[i]) def fuse_modules(model, modules_to_fuse, inplace=False, fuser_func=fuse_known_modules): r"""Fuses a list of modules into a single module Fuses only the following sequence of modules: * conv, bn * conv, bn, relu * conv, relu * linear, relu All other sequences are left unchanged. For these sequences, replaces the first item in the list with the fused module, replacing the rest of the modules with identity. Arguments: model: Model containing the modules to be fused modules_to_fuse: list of list of module names to fuse. Can also be a list of strings if there is only a single list of modules to fuse. inplace: bool specifying if fusion happens in place on the model, by default a new model is returned fuser_func: Function that takes in a list of modules and outputs a list of fused modules of the same length. For example, fuser_func([convModule, BNModule]) returns the list [ConvBNModule, nn.Identity()] Defaults to torch.quantization.fuse_known_modules Returns: model with fused modules. A new copy is created if inplace=True. Examples:: >>> m = myModel() >>> # m is a module containing the sub-modules below >>> modules_to_fuse = [ ['conv1', 'bn1', 'relu1'], ['submodule.conv', 'submodule.relu']] >>> fused_m = torch.quantization.fuse_modules(m, modules_to_fuse) >>> output = fused_m(input) >>> m = myModel() >>> # Alternately provide a single list of modules to fuse >>> modules_to_fuse = ['conv1', 'bn1', 'relu1'] >>> fused_m = torch.quantization.fuse_modules(m, modules_to_fuse) >>> output = fused_m(input) """ if not inplace: model = copy.deepcopy(model) if all(isinstance(module_element, str) for module_element in modules_to_fuse): # Handle case of modules_to_fuse being a list _fuse_modules(model, modules_to_fuse, fuser_func) else: # Handle case of modules_to_fuse being a list of lists for module_list in modules_to_fuse: _fuse_modules(model, module_list, fuser_func) return model