import torch from functools import reduce def maybe_view(variable, size, check_same_size=True): if check_same_size and variable.size() == size: return variable return variable.contiguous().view(size) def maybe_unexpand(variable, old_size, check_same_size=True): if check_same_size and variable.size() == old_size: return variable num_unsqueezed = variable.dim() - len(old_size) expanded_dims = [dim for dim, (expanded, original) in enumerate(zip(variable.size()[num_unsqueezed:], old_size)) if expanded != original] for _ in range(num_unsqueezed): variable = variable.sum(0, keepdim=False) for dim in expanded_dims: variable = variable.sum(dim, keepdim=True) return variable # Generate paddings in ONNX order based on pad in pytorch. # Arguments: # dim: the dimension of the tensor. # pad: the paddings in pytorch. # The order is dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, ... def prepare_onnx_paddings(dim, pad): assert isinstance(dim, int) # The desired order of paddings is # dim_0_begin, dim_1_begin, ... , dim_0_end, ..., dim_n_end. # n is the dimension of input. assert len(pad) <= dim * 2 # assume zero-dimensions in the beginning paddings = list(pad[:]) + [0] * (dim * 2 - len(pad)) # reverse order and collate first beginnings and then ends paddings = paddings[-2::-2] + paddings[-1::-2] assert len(paddings) == dim * 2 return paddings # Check whether the op enable broadcasting, and whether it is supported by ONNX. # If dims1 and dims2 are different, then broadcast is True. # We always assume the combination of dims1 and dims2 is broadcastable. # The following types of broadcasting are supported in ONNX: # 1) Only one element in dims2, such as dims2 = [1, 1] # 2) dims2 is suffix of dims1, such as dims1 = [2, 3, 4], and dims2 = [3, 4] # Details can be found here: https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm def check_onnx_broadcast(dims1, dims2): broadcast = False supported = True len1 = len(dims1) len2 = len(dims2) numel1 = reduce(lambda x, y: x * y, dims1) numel2 = reduce(lambda x, y: x * y, dims2) if len1 < len2: broadcast = True if numel2 != 1: supported = False elif len1 > len2: broadcast = True if numel2 != 1 and dims1[len1 - len2:] != dims2: supported = False else: if dims1 != dims2: broadcast = True if numel2 != 1: supported = False if not supported: raise ValueError("Numpy style broadcasting is not supported in ONNX. " "Input dims are: {}, {}".format(dims1, dims2)) return broadcast