from __future__ import annotations import collections import contextlib import enum import functools import inspect import itertools import logging import math import operator import os import platform import shutil import sys import tempfile import textwrap import time import unittest from io import StringIO from typing import ( Any, Callable, Dict, Iterable, List, NamedTuple, Optional, Set, TypeVar, Union, ValuesView, ) from unittest import mock import sympy import torch from torch._dynamo.device_interface import get_interface_for_device from torch.autograd import DeviceType from torch.autograd.profiler_util import EventList from torch.fx.immutable_collections import immutable_list from torch.utils._sympy.functions import CeilDiv, CleanDiv, FloorDiv, ModularIndexing from . import config log = logging.getLogger(__name__) _T = TypeVar("_T") VarRanges = Dict[sympy.Expr, sympy.Expr] def do_bench_using_profiling(fn: Callable[[], Any], warmup=25, rep=100) -> float: """ Returns benchmark results by examining torch profiler events. This could be more accurate as it doesn't count CPU side overhead. However, this also requires manually excluding irrelevant event, e.g. vectorized_elementwise_kernel which is used to fill L2 cache, various CUDA events, etc, so could also be fragile. """ fn() torch.cuda.synchronize() cache = torch.empty(int(256e6 // 4), dtype=torch.int, device="cuda") # Estimate the runtime of the function start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for _ in range(5): cache.zero_() fn() end_event.record() torch.cuda.synchronize() estimate_ms = start_event.elapsed_time(end_event) / 5 # compute number of warmup and repeat n_warmup = max(1, int(warmup / estimate_ms)) n_repeat = max(1, int(rep / estimate_ms)) # Warm-up for _ in range(n_warmup): fn() with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CUDA, ] ) as p: # Benchmark for i in range(n_repeat): # we clear the L2 cache before each run cache.zero_() # record time of `fn` fn() # Record clocks torch.cuda.synchronize() log.debug("raw events") log.debug(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1)) filtered_events = EventList( [event for event in p.events() if event.device_type == DeviceType.CUDA] ) if len(filtered_events) % n_repeat != 0: raise RuntimeError( "Failed to divide all profiling events into #repeat groups. " "#CUDA events: %d, #repeats: %s", len(filtered_events), n_repeat, ) num_event_per_group = len(filtered_events) / n_repeat actual_events = EventList( [ event for i, event in enumerate(filtered_events) if i % num_event_per_group != 0 ] ) actual_events._build_tree() actual_events = actual_events.key_averages() log.debug("profiling time breakdown") log.debug(actual_events.table(row_limit=-1)) res = sum(event.cuda_time for event in actual_events) / 1000.0 log.debug("profiling results: %s ms", res) return res def do_bench(*args, **kwargs): @functools.lru_cache(None) def load_triton(): try: # NB: Lazily load triton, as importing triton is slow # see https://github.com/openai/triton/issues/1599 from triton.testing import do_bench as triton_do_bench except ImportError: raise NotImplementedError("requires Triton") # triton PR https://github.com/openai/triton/pull/1513 change the # quantile fields name from 'percentiles' to 'quantiles' # and change the default value from (0.5, 0.2, 0.8) to None. # This may break inductor since a caller expects a tuple may get a item. # # Add a wrapper to maintain the same behavior for inductor. # Maybe we should have own implementation of this function? return triton_do_bench, ( "quantiles" if inspect.signature(triton_do_bench).parameters.get("quantiles") is not None else "percentiles" ) triton_do_bench, quantile_field_name = load_triton() if quantile_field_name not in kwargs: kwargs[quantile_field_name] = (0.5, 0.2, 0.8) return triton_do_bench(*args, **kwargs)[0] @functools.lru_cache(None) def has_torchvision_roi_align() -> bool: try: from torchvision.ops import roi_align # noqa: F401 return roi_align is not None and hasattr( getattr(torch.ops, "torchvision", None), "roi_align" ) except ImportError: return False def conditional_product(*args): return functools.reduce(operator.mul, [x for x in args if x]) def decode_device(device: Union[Optional[torch.device], str]) -> torch.device: if device is None: return torch.tensor(0.0).device # default device if isinstance(device, str): device = torch.device(device) if device.type != "cpu" and device.index is None: device_interface = get_interface_for_device(device.type) return torch.device(device.type, index=device_interface.Worker.current_device()) return device def sympy_product(it): return functools.reduce(operator.mul, it, sympy.Integer(1)) def sympy_dot(seq1, seq2): assert len(seq1) == len(seq2) return sympy.expand(sum(a * b for a, b in zip(seq1, seq2))) def unique(it: Iterable[_T]) -> ValuesView[_T]: return {id(x): x for x in it}.values() def ceildiv( numer: Union[int, sympy.Expr], denom: Union[int, sympy.Expr] ) -> Union[int, sympy.Expr]: if isinstance(numer, sympy.Expr) or isinstance(denom, sympy.Expr): return CeilDiv(numer, denom) # TODO: There is a bug in a call to this function, to repro: # python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy # --amp --only YituTechConvBert --dynamic-shapes assert isinstance(numer, int) and isinstance( denom, int ), f"{numer}: {type(numer)}, {denom}: {type(denom)}" return -(numer // -denom) def next_power_of_2(n: int) -> int: """Return the smallest power of 2 greater than or equal to n""" assert n <= 2**32, "32-bit only" n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n += 1 return n def convert_shape_to_inductor(lst: List[Union[int, torch.SymInt]]) -> List[sympy.Expr]: """ Gets the shape and stride of a tensor. For non-symbolic tensors, this is trivial. But for symbolic tensors, we need to map from SymIntNode into sympy.Expr. """ return [ i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst ] def convert_shape_to_symint( lst: List[Union[int, sympy.Expr]] ) -> List[Union[int, torch.SymInt]]: """ Takes a list of shapes from Inductor and converts them into symints (or just ints if all shapes are static). """ from .virtualized import V return [ i if isinstance(i, int) else int(i) if isinstance(i, sympy.Integer) else V.graph.sizevars.shape_env.create_symintnode(i, hint=None) for i in lst ] def gen_gm_and_inputs(target, args, kwargs): g = torch.fx.Graph() g_args = [] a_args = [] for n, arg in enumerate(args): if isinstance(arg, torch.Tensor): g_args.append(g.placeholder(f"arg{n}")) a_args.append(arg) else: g_args.append(arg) assert all(not isinstance(x, torch.Tensor) for x in kwargs.values()) node = g.call_function(target, tuple(g_args), kwargs) if ( len(target._schema.returns) == 1 and str(target._schema.returns[0].type) == "Tensor" ): node = (node,) g.output(node) gm = torch.fx.GraphModule({}, g) return gm, a_args def synchronize(device: str = "cuda"): if device == "cpu": return device_interface = get_interface_for_device(device) if device_interface.is_available(): device_interface.synchronize() def timed( model: Callable[..., Any], example_inputs, times: int = 1, device: str = "cuda" ) -> float: synchronize(device) torch.manual_seed(1337) t0 = time.perf_counter() for _ in range(times): result = model(*example_inputs) synchronize(device) t1 = time.perf_counter() # GC the result after timing assert result is not None return t1 - t0 def print_performance( fn, args=(), times=10, repeat=10, baseline=1.0, device: str = "cuda" ): timings = torch.tensor([timed(fn, args, times, device) for _ in range(repeat)]) took = torch.median(timings) / times print(f"{took/baseline:.6f}") return took def precompute_method(obj: Any, method: str): """Replace obj.method() with a new method that returns a precomputed constant.""" result = getattr(obj, method)() setattr(obj, method, lambda: result) def precompute_methods(obj: Any, methods: List[str]): """Replace methods with new methods that returns a precomputed constants.""" for method in methods: precompute_method(obj, method) def cmp(a, b) -> int: return int(a > b) - int(a < b) def pad_listlike(x, size): if len(x) == 1: return type(x)([x[0]]) * size else: return x def cache_on_self(fn): key = f"__{fn.__name__}_cache" @functools.wraps(fn) def wrapper(self): if not hasattr(self, key): setattr(self, key, fn(self)) return getattr(self, key) return wrapper def aggregate_origins(node_schedule): from . import ir if isinstance(node_schedule, list): return functools.reduce( operator.or_, [ node.node.origins for node in node_schedule if hasattr(node, "node") and node.node ], set(), ) elif isinstance(node_schedule, ir.ExternKernel): return node_schedule.origins else: return set() def get_fused_kernel_name(node_schedule, descriptive_names): all_origins = aggregate_origins(node_schedule) if descriptive_names == "original_aten": # Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions) sources = [ origin.meta["original_aten"]._overloadpacket.__name__ for origin in all_origins if origin.op == "call_function" and "original_aten" in origin.meta ] sources = sorted(set(sources)) elif descriptive_names == "torch": # Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph) sources = [] for origin in all_origins: if origin.op == "call_function" and "source_fn_stack" in origin.meta: source_fn = origin.meta["source_fn_stack"][-1] if isinstance(source_fn[1], str): sources.append(source_fn[1]) else: sources.append(source_fn[1].__name__) sources = sorted(set(sources)) elif descriptive_names == "inductor_node": sources = [ origin.name for origin in all_origins if origin.op == "call_function" ] else: raise NotImplementedError sources = sources return "_".join(["fused"] + sources) def get_kernel_metadata(node_schedule, wrapper): all_origins = aggregate_origins(node_schedule) inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"] from_node_dict = collections.defaultdict(list) original_aten_dict = collections.defaultdict(list) for node in inductor_nodes: if "original_aten" in node.meta: key = str(node.meta["original_aten"]._overloadpacket) original_aten_dict[key].append(node.name) if "from_node" in node.meta: key = node.meta["from_node"][0][0] from_node_dict[key].append(node.name) metadata = ( f"{wrapper.comment} Source Nodes: [{', '.join(sorted(from_node_dict.keys()))}], " f"Original ATen: [{', '.join(sorted(original_aten_dict.keys()))}]" ) # trace back to original node here detailed_metadata = [] for original_node, nodes in sorted(from_node_dict.items()): detailed_metadata.append( f"{wrapper.comment} {original_node} => {', '.join(sorted(nodes))}" ) return metadata, "\n".join(detailed_metadata) def dominated_nodes( initial_queue: Iterable[torch.fx.Node], skip_filter=None ) -> Set[torch.fx.Node]: """Returns the set of nodes whose values depend on those within initial_queue""" initial_queue = list(initial_queue) dominated_set = set(initial_queue) while initial_queue: node = initial_queue.pop() for user in node.users: if skip_filter and skip_filter(user): continue if user not in dominated_set: dominated_set.add(user) initial_queue.append(user) return dominated_set def gather_origins(args, kwargs): import itertools from . import ir def is_unrealized_node(n): if isinstance(n, ir.TensorBox): return is_unrealized_node(n.data) if isinstance(n, ir.StorageBox): return is_unrealized_node(n.data) return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise) kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)] arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)] return set(itertools.chain(*arg_origins, *kwarg_origins)) def sympy_str(expr: sympy.Expr) -> str: """ Normal sympy str is very slow, this is a lot faster. The result are somewhat worse, as it doesn't do as much simplification. So don't use this for final codegen. """ if isinstance(expr, sympy.Symbol): return expr.name if isinstance(expr, sympy.Add): return " + ".join(map(sympy_str, expr.args)) if isinstance(expr, sympy.Mul): return " * ".join(map(sympy_str, expr.args)) if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)): return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})" return str(expr) def sympy_symbol(name: str) -> sympy.Symbol: # This should never be used for creating shape/stride symbols, as those # should all be allocated before Inductor. assert name[0] != "s" # NOTE: shape symbols are positive (> 0), but index variables are only # non-negative (>= 0). return sympy.Symbol(name, integer=True, nonnegative=True) def sympy_subs(expr: sympy.Expr, replacements: Dict[Any, Any]) -> sympy.Expr: """ xreplace is faster than subs, but is way more picky """ def promote_strings(key): if isinstance(key, str): return sympy_symbol(key) return key return expr.xreplace( {promote_strings(k): promote_strings(v) for k, v in replacements.items()} ) def free_symbol_startswith(index: sympy.Expr, prefix: str): return any(v.name.startswith(prefix) for v in index.free_symbols) def free_symbol_has(index: sympy.Expr, pattern: str): return any(pattern in v.name for v in index.free_symbols) def has_incompatible_cudagraph_ops(gm): forbidden_set = { "aten._fused_moving_avg_obs_fq_helper.default", "aten._fused_moving_avg_obs_fq_helper_functional.default", "aten.multinomial.default", "fbgemm.dense_to_jagged.default", "fbgemm.jagged_to_padded_dense.default", "run_and_save_rng_state", "run_with_rng_state", "aten._local_scalar_dense", } if torch.are_deterministic_algorithms_enabled(): forbidden_set.update( { "aten._unsafe_index_put.default", "aten.index_put.default", "aten.index_put_.default", "aten.scatter.src", "aten.scatter.reduce", "aten.scatter.value_reduce", "aten.scatter_add_", "aten.scatter_add.default", "aten.scatter_reduce.two", "aten.scatter_reduce_.two", "aten.scatter_reduce.two_out", } ) for node in gm.graph.nodes: if str(node.target) in forbidden_set: return True return False instance_descriptor = collections.namedtuple( "instance_descriptor", ["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"], defaults=[tuple(), tuple(), tuple(), tuple()], ) @contextlib.contextmanager def fresh_inductor_cache(cache_entries=None): """ Contextmanager that provides a clean tmp cachedir for inductor. Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes generated with this cache instance. """ with tempfile.TemporaryDirectory() as inductor_cache_dir: with mock.patch.dict( os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir} ): triton_cache_dir = os.path.join(inductor_cache_dir, "triton") with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}): yield if isinstance(cache_entries, dict): assert len(cache_entries) == 0, "expected empty cache_entries dict" if os.path.exists(triton_cache_dir): files = os.listdir(triton_cache_dir) cache_entries.update( { f: os.path.getsize(os.path.join(triton_cache_dir, f)) for f in files if ".lock" not in f } ) def argsort(seq) -> List[int]: # preserve original order for equal strides getter = seq.__getitem__ a_r = range(len(seq)) return list(reversed(sorted(a_r, key=getter, reverse=True))) # noqa: C413 @functools.lru_cache(8) def get_dtype_size(dtype): return torch.empty((), dtype=dtype).element_size() class LineContext(NamedTuple): context: Any class IndentedBuffer: tabwidth = 4 def __init__(self, initial_indent=0): self._lines = [] self._indent = initial_indent def getvaluewithlinemap(self) -> tuple[str, list[tuple[int, LineContext]]]: buf = StringIO() p = 1 linemap = [] for line in self._lines: if isinstance(line, DeferredLineBase): line = line() if line is None: continue elif isinstance(line, LineContext): linemap.append((p, line.context)) continue assert isinstance(line, str) buf.write(line) buf.write("\n") p += 1 + line.count("\n") return buf.getvalue(), linemap def getvalue(self) -> str: v, _ = self.getvaluewithlinemap() return v def getrawvalue(self) -> str: buf = StringIO() for line in self._lines: if isinstance(line, DeferredLineBase): line = line() if line is None: continue elif isinstance(line, LineContext): continue assert isinstance(line, str) # backslash implies line continuation if line.endswith("\\"): buf.write(line[:-1]) else: buf.write(line) buf.write("\n") return buf.getvalue() def clear(self): self._lines.clear() def __bool__(self): return bool(self._lines) def prefix(self): return " " * (self._indent * self.tabwidth) def writeline(self, line): if isinstance(line, LineContext): self._lines.append(line) elif isinstance(line, DeferredLineBase): self._lines.append(line.with_prefix(self.prefix())) elif line.strip(): self._lines.append(f"{self.prefix()}{line}") else: self._lines.append("") def writelines(self, lines): for line in lines: self.writeline(line) def indent(self, offset=1): @contextlib.contextmanager def ctx(): self._indent += offset try: yield finally: self._indent -= offset return ctx() def splice(self, other_code, strip=False): if isinstance(other_code, IndentedBuffer): dedent = float("inf") for line in other_code._lines: if not isinstance(line, LineContext) and line: dedent = min(dedent, len(line) - len(line.lstrip())) if math.isinf(dedent): dedent = 0 for line in other_code._lines: if isinstance(line, LineContext): self._lines.append(line) else: IndentedBuffer.writeline(self, line[int(dedent) :]) else: other_code = textwrap.dedent(other_code) if strip: other_code = other_code.lstrip() if not other_code: return other_code = other_code.rstrip() for line in other_code.split("\n"): self.writeline(line) class DeferredLineBase: """A line that can be 'unwritten' at a later time""" def __init__(self, line): if not line.strip(): line = "" self.line = line def __call__(self) -> Optional[str]: """Returns either self.line or None to indicate the line has been 'unwritten'""" raise NotImplementedError() def _new_line(self, line: str) -> DeferredLineBase: """Returns a new deferred line with the same condition""" raise NotImplementedError() def with_prefix(self, prefix): return self._new_line(f"{prefix}{self.line}") def lstrip(self): return self._new_line(self.line.lstrip()) def __getitem__(self, index): return self._new_line(self.line[index]) def __bool__(self): return bool(self.line) def __len__(self): return len(self.line) @functools.lru_cache(None) def is_big_gpu(index): sms = torch.cuda.get_device_properties(index).multi_processor_count if sms < 80: # V100 log.warning("not enough SMs to use max_autotune_gemm mode") return False return True def use_max_autotune() -> bool: return ( config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache ) def _use_template_for_cuda(layout, allowed_layout_dtypes: List[torch.dtype]) -> bool: return ( use_max_autotune() and layout.device.type == "cuda" and layout.dtype in allowed_layout_dtypes and is_big_gpu(layout.device.index or 0) ) def _use_autotune_backend(backend: str) -> bool: return backend.upper() in [ x.strip() for x in config.max_autotune_gemm_backends.upper().split(",") ] def use_triton_template(layout, *, enable_int32=False): layout_dtypes = [torch.float16, torch.bfloat16, torch.float32] if enable_int32: layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32] return _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend( "TRITON" ) def use_cutlass_template(layout): from .codegen.cuda.cutlass_utils import try_import_cutlass layout_dtypes = [torch.float16, torch.bfloat16, torch.float32] res = _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend( "CUTLASS" ) if res: if not try_import_cutlass(): log.warning( "Failed to import CUTLASS lib. Please check whether " "_inductor.config.cuda.cutlass_dir is set correctly. " "Skipping CUTLASS backend for now." ) return False return res def use_aten_gemm_kernels(): return not use_max_autotune() or _use_autotune_backend("ATEN") class DebugDirManager: counter = itertools.count(0) def __init__(self): self.id = next(DebugDirManager.counter) self.prev_debug_name = None def __enter__(self): self.prev_debug_name = torch._dynamo.config.debug_dir_root self.new_name = f"{self.prev_debug_name}_tmp_{self.id}" torch._dynamo.config.debug_dir_root = self.new_name def __exit__(self, *args): shutil.rmtree(self.new_name) torch._dynamo.config.debug_dir_root = self.prev_debug_name def run_and_get_code(fn, *args, **kwargs): from .graph import GraphLowering compile_to_module = GraphLowering.compile_to_module source_codes = [] def patched_compile_to_module(self): mod = compile_to_module(self) with open(mod.__file__) as f: source_codes.append(f.read()) return mod with mock.patch.object( GraphLowering, "compile_to_module", patched_compile_to_module ): torch._dynamo.reset() result = fn(*args, **kwargs) return result, source_codes def run_and_get_triton_code(fn, *args, **kwargs): _, source_codes = run_and_get_code(fn, *args, **kwargs) # Can have two outputs if backwards was eagerly compiled assert ( 1 <= len(source_codes) <= 2 ), f"expected one or two code outputs got {len(source_codes)}" return source_codes[0] @contextlib.contextmanager def override_lowering(aten_op, override_fn): """ Override the lowering of aten_op with override_fn. The first argument of override_fn is the original lowering fn. """ from torch._inductor import lowering orig_fn = lowering.lowerings[aten_op] try: lowering.lowerings[aten_op] = functools.partial(override_fn, orig_fn) yield finally: lowering.lowerings[aten_op] = orig_fn def add_scheduler_init_hook(pre_fn, post_fn=None): """ Add hook functions to be called at the beginning and end of Scheduler.__init__. Used for unit tests. """ from torch._inductor.scheduler import Scheduler orig_fn = Scheduler.__init__ def wrapper(scheduler, nodes): pre_fn(scheduler, nodes) out = orig_fn(scheduler, nodes) if post_fn: post_fn(scheduler, nodes) return out return unittest.mock.patch.object(Scheduler, "__init__", wrapper) def developer_warning(msg): """ Warnings that will be actionable for PyTorch developers, but not end users. Allows us to easily disable them in stable releases but keep them on for nightly builds. """ if config.developer_warnings: log.warning(msg) else: log.info(msg) def get_num_bytes(*args: torch.Tensor, num_in_out_args: int = 0) -> int: """ Return the total number of bytes the arguments of tensor type takes. For in/out args, tensor sizes are counted twice: once for reading and once for writing. The first num_in_out_args arguments are in out tensors. """ return sum( arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args)) for i, arg in enumerate(args) if isinstance(arg, torch.Tensor) ) def create_bandwidth_info_str(ms, num_gb, gb_per_s, prefix="", suffix=""): info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}" try: import colorama # type: ignore[import] if ms > 0.012 and gb_per_s < 650: info_str = colorama.Fore.RED + info_str + colorama.Fore.RESET except ImportError: log.warning("Colorama is not installed. Install it if you want colored output") return info_str def get_benchmark_name(): """ An experimental API used only when config.benchmark_kernel is true. The benchmark name is only available at codegen time. So we can not directly call it in benchmark_all_kernels which is run after codegen. The function assumes the argument after --only is the benchmark name. It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc scripts, this function may return None. There are 2 flavors of --only argument we need handle: 1. --only model_name 2. --only=model_name """ try: idx = sys.argv.index("--only") if ( idx + 1 < len(sys.argv) and len(sys.argv[idx + 1]) > 0 and sys.argv[idx + 1][0] != "-" ): return sys.argv[idx + 1] except ValueError: pass for arg in sys.argv: if arg.startswith("--only="): return arg[len("--only=") :] def is_ones(items): return all(x == 1 for x in items) def is_zeros(items): return all(x == 0 for x in items) def is_cpu_device(inputs): return all( item.device == torch.device("cpu") for item in inputs if isinstance(item, torch.Tensor) ) def get_sympy_Expr_dtype(val: sympy.Expr) -> torch.dtype: assert isinstance( val, sympy.Expr ), "only support sympy.Expr as input to get_sympy_Expr_dtype" if val.is_integer: return torch.int64 else: return torch.float64 @contextlib.contextmanager def maybe_profile(should_profile, *args, **kwargs): if should_profile: with torch.profiler.profile(*args, **kwargs) as p: yield p else: yield def triton_config_to_hashable(cfg): """ Convert triton config to a tuple that can uniquely identify it. We can use the return value as a dictionary key. """ items = sorted(cfg.kwargs.items()) items.append(("num_warps", cfg.num_warps)) items.append(("num_stages", cfg.num_stages)) return tuple(items) HAS_COLORAMA = True try: import colorama except ImportError: HAS_COLORAMA = False def _color_text(msg, color): if not HAS_COLORAMA: return msg return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET def green_text(msg): return _color_text(msg, "green") def yellow_text(msg): return _color_text(msg, "yellow") def red_text(msg): return _color_text(msg, "red") def blue_text(msg): return _color_text(msg, "blue") @functools.lru_cache(None) def python_type_to_schema_type(): from . import ir PYTHON_TYPE_TO_SCHEMA_TYPE = { torch.dtype: "int", torch.device: "Device", bool: "bool", float: "float", ir.TensorBox: "Tensor", } return PYTHON_TYPE_TO_SCHEMA_TYPE def may_get_optional_schema_type(schema_type, is_optional_arg): return f"Optional[{schema_type}]" if is_optional_arg else schema_type def type_match(arg, arg_type, is_optional_arg): if isinstance(arg, immutable_list): if all( isinstance(x, int) or (isinstance(x, sympy.Symbol) and x.is_integer) for x in arg ): may_optional_schema_type = may_get_optional_schema_type( "List[int]", is_optional_arg ) return may_optional_schema_type == str(arg_type) else: # TODO: add support here return False if arg.__class__ in python_type_to_schema_type(): schema_type = python_type_to_schema_type()[arg.__class__] may_optional_schema_type = may_get_optional_schema_type( schema_type, is_optional_arg ) return may_optional_schema_type == str(arg_type) # TODO: add support here return False # torch/csrc/utils/python_arg_parser.cpp:FunctionSignature::parse def schema_match(schema, args, kwargs): min_args = 0 max_pos_args = 0 for argument in schema.arguments: if not argument.has_default_value(): min_args += 1 if not argument.kwarg_only: max_pos_args += 1 nargs = len(args) remaining_kwargs = len(kwargs) arg_pos = 0 def args_error_message(nargs, max_pos_args, min_args): if min_args != max_pos_args: return f"takes from {min_args} to {max_pos_args} positional arguments but {nargs} were given" else: return f"takes {max_pos_args} positional arguments but {nargs} were given" def is_optional(arg): return "Optional" in str(arg.type) def allow_none(arg): return is_optional(arg) or arg.has_default_value() assert len(args) <= max_pos_args, args_error_message( len(args), max_pos_args, min_args ) for argument in schema.arguments: obj = None is_kwd = False if arg_pos < nargs: if argument.kwarg_only: return False obj = args[arg_pos] elif kwargs: if argument.name in kwargs: obj = kwargs[argument.name] is_kwd = True if obj is None and not allow_none(argument): return False if obj is not None: expected_type = argument.type if not type_match(obj, expected_type, is_optional(argument)): return False if not is_kwd: arg_pos += 1 elif (obj is None and is_optional(argument)) or obj is not None: remaining_kwargs -= 1 if remaining_kwargs > 0: return False return True def try_find_schema(schemas, args, kwargs): for schema in schemas: if schema_match(schema, args, kwargs): return schema return None def get_device_tflops(dtype): from triton.testing import get_max_simd_tflops, get_max_tensorcore_tflops assert dtype in (torch.float16, torch.bfloat16, torch.float32) if dtype in (torch.float16, torch.bfloat16): return get_max_tensorcore_tflops(dtype) if torch.backends.cuda.matmul.allow_tf32: return get_max_tensorcore_tflops(torch.float32) else: return get_max_simd_tflops(torch.float32) def get_gpu_dram_gbps(): from triton.testing import get_dram_gbps return get_dram_gbps() def is_welford_reduction(reduction_type): return reduction_type.startswith("welford") def reduction_num_outputs(reduction_type): return 3 if is_welford_reduction(reduction_type) else 1 def is_linux() -> bool: return platform.system() == "Linux" # Placeholder strings used in triton codegen. class Placeholder(enum.Enum): # The placeholder for the actual name of a triton kernel. # e.g. for "def triton_" it would be "triton_" KERNEL_NAME = "KERNEL_NAME" # The descriptive name of the triton kernel; when unique_kernel_names = False, this # placeholder will be replaced with a string with more information. DESCRIPTIVE_NAME = "DESCRIPTIVE_NAME" # A utility function for easier AOTInductor testing aot_inductor_launcher = """ #ifdef USE_CUDA #include #endif // USE_CUDA #include #include class RAIIModelContainer { public: RAIIModelContainer() { AOTI_RUNTIME_ERROR_CODE_CHECK(AOTInductorModelContainerCreate( &container_handle, 1 /*num_models*/, false /*is_cpu*/, nullptr /*cubin_dir*/)); } ~RAIIModelContainer() { AOTI_RUNTIME_ERROR_CODE_CHECK( AOTInductorModelContainerDelete(container_handle)); } AOTInductorModelContainerHandle get() const { return container_handle; } private: AOTInductorModelContainerHandle container_handle; }; // Global instance RAIIModelContainer model_container; std::vector run(std::vector& input_tensors) { auto input_handles = torch::aot_inductor::unsafe_alloc_new_handles_from_tensors(input_tensors); // For outputs, we only allocate a vector to hold returned tensor handles, // not allocating the actual output tensor storage here size_t num_outputs; AOTI_RUNTIME_ERROR_CODE_CHECK( AOTInductorModelContainerGetNumOutputs( model_container.get(), &num_outputs)); std::vector output_handles(num_outputs); #ifdef USE_CUDA const auto& cuda_stream = c10::cuda::getCurrentCUDAStream(); const auto stream_id = cuda_stream.stream(); AOTInductorStreamHandle stream_handle = reinterpret_cast(stream_id); #else // !USE_CUDA AOTInductorStreamHandle stream_handle = nullptr; #endif AOTIProxyExecutorHandle proxy_executor_handle = nullptr; AOTI_RUNTIME_ERROR_CODE_CHECK(AOTInductorModelContainerRun( model_container.get(), input_handles.data(), input_tensors.size(), output_handles.data(), output_handles.size(), stream_handle, proxy_executor_handle)); return torch::aot_inductor::alloc_tensors_by_stealing_from_handles( output_handles.data(), output_handles.size()); } """