from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from hypothesis import given import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu class TestTTPad(hu.HypothesisTestCase): @given(K=st.integers(min_value=2, max_value=10), M=st.integers(min_value=10, max_value=20), N=st.integers(min_value=10, max_value=20), **hu.gcs) def test_tt_pad(self, K, M, N, gc, dc): op = core.CreateOperator( 'TTPad', ['A'], ['A', 'dim0'], scale=(K)) A = np.random.rand(M, N).astype(np.float32) workspace.FeedBlob('A', A) workspace.RunOperatorOnce(op) def tt_pad_ref(A_): M_ = A_.shape[0] if M_ % K == 0: new_dim0 = M_ else: new_dim0 = (M_ // K + 1) * K return (np.vstack((A_, np.zeros((new_dim0 - M_, A_.shape[1])))), np.array([A.shape[0]])) # Check against numpy reference self.assertReferenceChecks(gc, op, [A], tt_pad_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [A], [0]) # Gradient check wrt A self.assertGradientChecks(gc, op, [A], 0, [0])