#include #include #ifndef _MSC_VER #include #endif #include #include #include #include #include #include #include #include "torch/csrc/DynamicTypes.h" #include "torch/csrc/autograd/generated/python_nn_functions.h" #include "torch/csrc/utils/python_strings.h" #include "torch/csrc/utils/tensor_numpy.h" #include "torch/csrc/jit/python_tracer.h" #include "torch/csrc/jit/init.h" #include "torch/csrc/jit/python_ir.h" #ifdef WITH_CUDNN #include #endif #define WITH_NUMPY_IMPORT_ARRAY #include "THP.h" #include "ModuleSparse.cpp" #include "DataLoader.cpp" PyObject* module; PyObject* tensor_classes; PyObject *THPDefaultTensorClass = NULL; THPGenerator *THPDefaultGenerator = NULL; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// static bool THPModule_loadClasses(PyObject *self) { #define ASSERT_NOT_NULL(ptr) if (!(ptr)) { THPUtils_setError("couldn't load classes"); return false; } PyObject *torch_module = PyImport_ImportModule("torch"); if (!torch_module) { THPUtils_setError("class loader couldn't access torch module"); return false; } ASSERT_NOT_NULL(tensor_classes = PyObject_GetAttrString(torch_module, "_tensor_classes")); if (!THPDoubleTensor_postInit(torch_module)) return false; if (!THPFloatTensor_postInit(torch_module)) return false; if (!THPHalfTensor_postInit(torch_module)) return false; if (!THPLongTensor_postInit(torch_module)) return false; if (!THPIntTensor_postInit(torch_module)) return false; if (!THPShortTensor_postInit(torch_module)) return false; if (!THPCharTensor_postInit(torch_module)) return false; if (!THPByteTensor_postInit(torch_module)) return false; THPDoubleStorage_postInit(torch_module); THPFloatStorage_postInit(torch_module); THPHalfStorage_postInit(torch_module); THPLongStorage_postInit(torch_module); THPIntStorage_postInit(torch_module); THPShortStorage_postInit(torch_module); THPCharStorage_postInit(torch_module); THPByteStorage_postInit(torch_module); return true; #undef ASSERT_NOT_NULL } static PyObject * THPModule_initNames(PyObject *self, PyObject *arg) { static std::vector names; THPObjectPtr types(PySequence_Fast(arg, "expected a sequence")); if (!types) return NULL; int num_classes = PySequence_Fast_GET_SIZE(types.get()); names.reserve(names.size() + num_classes); for (int i = 0; i < num_classes; i++) { PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i); THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject"); PyTypeObject* type = (PyTypeObject*)obj; THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__")); if (!module_name) return NULL; THPUtils_assert(THPUtils_checkString(module_name.get()), "expected __module__ to be a string"); std::string name = THPUtils_unpackString(module_name.get()); names.push_back(name + "." + type->tp_name); type->tp_name = names.back().c_str(); } Py_RETURN_NONE; } static bool THPModule_assignStateless(PyObject *self) { #define INIT_STATELESS(type) \ stateless = PyObject_CallFunctionObjArgs((PyObject*)&TH_CONCAT_2(type, TensorStatelessType), NULL); \ if (!stateless) { \ return false; \ } \ if (PyObject_SetAttrString(TH_CONCAT_3(THP,type,TensorClass), THP_STATELESS_ATTRIBUTE_NAME, stateless) == -1) { \ return false; \ } PyObject *stateless; INIT_STATELESS(Double); INIT_STATELESS(Float); INIT_STATELESS(Half); INIT_STATELESS(Long); INIT_STATELESS(Int); INIT_STATELESS(Short); INIT_STATELESS(Char); INIT_STATELESS(Byte); return true; #undef INIT_STATELESS } // // Callback for python part. Used for additional initialization of python classes static PyObject * THPModule_initExtension(PyObject *self, PyObject *shm_manager_path) { HANDLE_TH_ERRORS if (!THPUtils_checkString(shm_manager_path)) { THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!"); return NULL; } std::string path = THPUtils_unpackString(shm_manager_path); libshm_init(path.c_str()); if (!THPModule_loadClasses(self)) return NULL; if (!THPModule_assignStateless(self)) return NULL; if (!THPAutograd_initFunctions(self)) return NULL; Py_RETURN_NONE; END_HANDLE_TH_ERRORS } static PyObject * THPModule_getNumThreads(PyObject *module) { return PyLong_FromLong(THGetNumThreads()); } static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg) { THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, " "but got %s", THPUtils_typename(arg)); THSetNumThreads((int)THPUtils_unpackLong(arg)); Py_RETURN_NONE; } bool THPModule_isTensor(PyObject *obj) { int result = PySet_Contains(tensor_classes, (PyObject*)Py_TYPE(obj)); if (result == -1) throw std::logic_error("FATAL: tensor_classes isn't a set!"); return result; } PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type) { THPDefaultTensorClass = type; Py_RETURN_NONE; } PyObject * THPModule_fromNumpy(PyObject *_unused, PyObject *array) { HANDLE_TH_ERRORS return torch::createPyObject(torch::utils::tensor_from_numpy(array)); END_HANDLE_TH_ERRORS } /** * STATELESS FUNCTIONS **/ static PyObject * findTensor(PyObject *args, PyObject *kwargs) { for (Py_ssize_t i = 0; i < PyTuple_Size(args); i++) { PyObject *item = PyTuple_GET_ITEM(args, i); if (THPModule_isTensor(item) || THPVariable_Check(item)) { return item; } } if (kwargs) { Py_ssize_t pos = 0; PyObject *key, *value; while (PyDict_Next(kwargs, &pos, &key, &value)) { if (THPModule_isTensor(value) || THPVariable_Check(value)) { return value; } } } return THPDefaultTensorClass; } static PyObject * swapFirstTwoItems(PyObject *args) { // Returns a tuple with the first two items swapped auto size = PyTuple_GET_SIZE(args); auto r = THPObjectPtr{PyTuple_New(size)}; if (!r) return nullptr; for (Py_ssize_t i = 0; i < size; i++) { PyObject* obj = PyTuple_GET_ITEM(args, (i <= 1 ? 1 - i : i)); Py_INCREF(obj); PyTuple_SET_ITEM(r.get(), i, obj); } return r.release(); } static PyObject * dispatchStateless(PyObject *args, PyObject *kwargs, const char *name) { PyObject *tensor = findTensor(args, kwargs); return THPUtils_dispatchStateless(tensor, name, args, kwargs); } static PyObject * dispatchStatelessAddXX(PyObject *args, PyObject *kwargs, const char *name) { PyObject *tensor = findTensor(args, kwargs); if (THPVariable_Check(tensor) && PyTuple_GET_SIZE(args) >= 2 && tensor == PyTuple_GET_ITEM(args, 1)) { // On Variables, swap the first two arguments if the 'self' argument comes // second. This handles the deprecated torch.addxx signatures. For example, // torch.addmm(1, var, 2, a, b) -> var.addmm(1, 2, a, b) auto newArgs = THPObjectPtr{swapFirstTwoItems(args)}; return THPUtils_dispatchStateless(tensor, name, newArgs.get(), kwargs); } else { return THPUtils_dispatchStateless(tensor, name, args, kwargs); } } #define IMPLEMENT_STATELESS(name) \ static PyObject * TH_CONCAT_2(THPModule_, name)(PyObject *_unused, PyObject *args, PyObject *kwargs) \ { \ return dispatchStateless(args, kwargs, #name); \ } #define IMPLEMENT_STATELESS_ADDXX(name) \ static PyObject * TH_CONCAT_2(THPModule_, name)(PyObject *_unused, PyObject *args, PyObject *kwargs) \ { \ return dispatchStatelessAddXX(args, kwargs, #name); \ } IMPLEMENT_STATELESS(sigmoid) IMPLEMENT_STATELESS(log) IMPLEMENT_STATELESS(log1p) IMPLEMENT_STATELESS(lgamma) IMPLEMENT_STATELESS(erf) IMPLEMENT_STATELESS(erfinv) IMPLEMENT_STATELESS(exp) IMPLEMENT_STATELESS(cos) IMPLEMENT_STATELESS(acos) IMPLEMENT_STATELESS(cosh) IMPLEMENT_STATELESS(sin) IMPLEMENT_STATELESS(asin) IMPLEMENT_STATELESS(sinh) IMPLEMENT_STATELESS(tan) IMPLEMENT_STATELESS(atan) IMPLEMENT_STATELESS(tanh) IMPLEMENT_STATELESS(sqrt) IMPLEMENT_STATELESS(rsqrt) IMPLEMENT_STATELESS(ceil) IMPLEMENT_STATELESS(floor) IMPLEMENT_STATELESS(round) IMPLEMENT_STATELESS(abs) IMPLEMENT_STATELESS(trunc) IMPLEMENT_STATELESS(frac) IMPLEMENT_STATELESS(mean) IMPLEMENT_STATELESS(std) IMPLEMENT_STATELESS(var) IMPLEMENT_STATELESS(norm) IMPLEMENT_STATELESS(reciprocal) IMPLEMENT_STATELESS(neg) IMPLEMENT_STATELESS(add) IMPLEMENT_STATELESS(mul) IMPLEMENT_STATELESS(div) IMPLEMENT_STATELESS(fmod) IMPLEMENT_STATELESS(min) IMPLEMENT_STATELESS(max) IMPLEMENT_STATELESS(dot) IMPLEMENT_STATELESS(sum) IMPLEMENT_STATELESS(prod) IMPLEMENT_STATELESS(remainder) IMPLEMENT_STATELESS(cumsum) IMPLEMENT_STATELESS(cumprod) IMPLEMENT_STATELESS(clamp) IMPLEMENT_STATELESS(equal) IMPLEMENT_STATELESS(eye) IMPLEMENT_STATELESS(diag) IMPLEMENT_STATELESS(numel) IMPLEMENT_STATELESS(sign) IMPLEMENT_STATELESS(trace) IMPLEMENT_STATELESS(tril) IMPLEMENT_STATELESS(triu) IMPLEMENT_STATELESS(zero) IMPLEMENT_STATELESS(kthvalue) IMPLEMENT_STATELESS(mode) IMPLEMENT_STATELESS(median) IMPLEMENT_STATELESS(cross) IMPLEMENT_STATELESS(sort) IMPLEMENT_STATELESS(topk) IMPLEMENT_STATELESS(t) IMPLEMENT_STATELESS(transpose) IMPLEMENT_STATELESS(squeeze) IMPLEMENT_STATELESS(unsqueeze) IMPLEMENT_STATELESS(renorm) IMPLEMENT_STATELESS(dist) IMPLEMENT_STATELESS(linspace) IMPLEMENT_STATELESS(logspace) IMPLEMENT_STATELESS(histc) IMPLEMENT_STATELESS(atan2) IMPLEMENT_STATELESS(pow) IMPLEMENT_STATELESS(lerp) IMPLEMENT_STATELESS(zeros) IMPLEMENT_STATELESS(zeros_like) IMPLEMENT_STATELESS(ones) IMPLEMENT_STATELESS(ones_like) IMPLEMENT_STATELESS(index_select) IMPLEMENT_STATELESS(take) IMPLEMENT_STATELESS(ger) IMPLEMENT_STATELESS(mv) IMPLEMENT_STATELESS(mm) IMPLEMENT_STATELESS(bmm) // TODO: this doesn't implement options that return numbers! IMPLEMENT_STATELESS(multinomial) IMPLEMENT_STATELESS(normal) IMPLEMENT_STATELESS(standard_gamma) IMPLEMENT_STATELESS(bernoulli) IMPLEMENT_STATELESS(range) IMPLEMENT_STATELESS(arange) IMPLEMENT_STATELESS(gather) IMPLEMENT_STATELESS(rand) IMPLEMENT_STATELESS(randn) IMPLEMENT_STATELESS(masked_select) IMPLEMENT_STATELESS(gesv) IMPLEMENT_STATELESS(gels) IMPLEMENT_STATELESS(trtrs) IMPLEMENT_STATELESS(symeig) IMPLEMENT_STATELESS(eig) IMPLEMENT_STATELESS(svd) IMPLEMENT_STATELESS(inverse) IMPLEMENT_STATELESS(potrf) IMPLEMENT_STATELESS(potrs) IMPLEMENT_STATELESS(potri) IMPLEMENT_STATELESS(pstrf) IMPLEMENT_STATELESS(qr) IMPLEMENT_STATELESS(geqrf) IMPLEMENT_STATELESS(orgqr) IMPLEMENT_STATELESS(ormqr) IMPLEMENT_STATELESS(btrifact) IMPLEMENT_STATELESS(btrisolve) IMPLEMENT_STATELESS(gt) IMPLEMENT_STATELESS(lt) IMPLEMENT_STATELESS(ge) IMPLEMENT_STATELESS(le) IMPLEMENT_STATELESS(eq) IMPLEMENT_STATELESS(ne) IMPLEMENT_STATELESS_ADDXX(addmm) IMPLEMENT_STATELESS_ADDXX(addmv) IMPLEMENT_STATELESS_ADDXX(addr) IMPLEMENT_STATELESS_ADDXX(addbmm) IMPLEMENT_STATELESS_ADDXX(baddbmm) IMPLEMENT_STATELESS_ADDXX(addcmul) IMPLEMENT_STATELESS_ADDXX(addcdiv) #undef IMPLEMENT_STATELESS #undef IMPLEMENT_STATELESS_ADDXX // In nonzero, the first argument might be a LongTensor that will be used // for indices output, so we should pick a function based on second // tensor's type. static PyObject * THPModule_nonzero(PyObject *_unused, PyObject *args, PyObject *kwargs) { PyObject *tensor = THPDefaultTensorClass; if (PyTuple_Size(args) == 1) tensor = PyTuple_GET_ITEM(args, 0); else if (PyTuple_Size(args) == 2) tensor = PyTuple_GET_ITEM(args, 1); return THPUtils_dispatchStateless(tensor, "nonzero", args, kwargs); } static PyObject * THPModule_randperm(PyObject *_unused, PyObject *args, PyObject *kwargs) { PyObject *tensor = THPLongTensorClass; PyObject *out; if (kwargs && (out = PyDict_GetItemString(kwargs, "out"))) tensor = out; return THPUtils_dispatchStateless(tensor, "randperm", args, kwargs); } static PyObject * THPModule_cat(PyObject *_unused, PyObject *args, PyObject *kwargs) { PyObject *tensor = THPDefaultTensorClass; THPObjectPtr iterator; THPObjectPtr item; PyObject *first_arg=nullptr; if (args && PyTuple_GET_SIZE(args) > 0) { first_arg = PyTuple_GET_ITEM(args, 0); } else if (kwargs && PyTuple_GET_ITEM(args, 0)) { first_arg = PyDict_GetItemString(kwargs, "seq"); } if (first_arg) { if (THPModule_isTensor(first_arg)) { tensor = first_arg; } else if (PySequence_Check(first_arg)) { item = PySequence_GetItem(first_arg, 0); if (item && (THPModule_isTensor(item) || THPVariable_Check(item))) { tensor = item; } } PyErr_Clear(); } return THPUtils_dispatchStateless(tensor, "cat", args, kwargs); } PyObject *THPModule_safeCall(PyObject *_unused, PyObject *args, PyObject *kwargs) { PyObject *result = NULL; PyObject *args_slice = NULL; PyThreadState *thread_state = PyThreadState_Get(); Py_ssize_t num_args = args ? PyTuple_Size(args) : 0; THPUtils_assert(num_args > 0, "expected at least one argument"); try { args_slice = PyTuple_GetSlice(args, 1, num_args); result = PyObject_Call(PyTuple_GET_ITEM(args, 0), args_slice, kwargs); } catch (std::exception &e) { PyEval_RestoreThread(thread_state); Py_DECREF(args_slice); PyErr_SetString(THPException_FatalError, e.what()); Py_LeaveRecursiveCall(); } Py_DECREF(args_slice); return result; } PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args) { // adds a __doc__ string to a function, similar to numpy's arr_add_docstring static std::vector all_docs; PyObject *obj; PyObject *doc_obj; if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) { return NULL; } const char* doc_str = ""; if (THPUtils_checkString(doc_obj)) { all_docs.push_back(THPUtils_unpackString(doc_obj)); doc_str = all_docs.back().c_str(); } if (Py_TYPE(obj) == &PyCFunction_Type) { PyCFunctionObject* f = (PyCFunctionObject *)obj; if (f->m_ml->ml_doc) { return PyErr_Format(PyExc_RuntimeError, "function '%s' already has a docstring", f->m_ml->ml_name); } f->m_ml->ml_doc = doc_str; } else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) { PyMethodDescrObject* m = (PyMethodDescrObject *)obj; if (m->d_method->ml_doc) { return PyErr_Format(PyExc_RuntimeError, "method '%s' already has a docstring", m->d_method->ml_name); } m->d_method->ml_doc = doc_str; } else { return PyErr_Format(PyExc_TypeError, "don't know how to add docstring to type '%s'", Py_TYPE(obj)->tp_name); } Py_INCREF(obj); return obj; } PyObject *THPModule_inferSize(PyObject *_unused, PyObject *args) { HANDLE_TH_ERRORS Py_ssize_t num_args = args ? (Py_ssize_t) PyTuple_Size(args) : 0; THPUtils_assert(num_args == 2, "expected exactly 2 arguments"); PyObject *arg1 = PyTuple_GET_ITEM(args, 0); THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1"); PyObject *arg2 = PyTuple_GET_ITEM(args, 1); THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2"); THLongStoragePtr size1_guard = THPUtils_unpackSize(arg1); THLongStorage *size1 = size1_guard.get(); THLongStoragePtr size2_guard = THPUtils_unpackSize(arg2); THLongStorage *size2 = size2_guard.get(); THLongStoragePtr sizes_guard(THLongStorage_new()); THLongStorage *sizes = sizes_guard.get(); char error_buffer[1024]; int ret = THLongStorage_inferSize2(sizes, size1->data, size1->size, size2->data, size2->size, error_buffer, 1024); THPUtils_assert(ret == 0, error_buffer); return THPSize_New(sizes->size, sizes->data); END_HANDLE_TH_ERRORS } static PyObject *THPModule_setBackcompatBroadcastWarn(PyObject *module, PyObject *arg) { THPUtils_assert(PyBool_Check(arg), "set_backcompat_broadcast_warn expects a bool, " "but got %s", THPUtils_typename(arg)); setBackCompatBroadcastWarn(arg == Py_True); Py_RETURN_NONE; } static PyObject *THPModule_getBackcompatBroadcastWarn(PyObject *module) { if (getBackCompatBroadcastWarn()) Py_RETURN_TRUE; else Py_RETURN_FALSE; } static PyObject *THPModule_setBackcompatKeepdimWarn(PyObject *module, PyObject *arg) { THPUtils_assert(PyBool_Check(arg), "set_backcompat_keepdim_warn expects a bool, " "but got %s", THPUtils_typename(arg)); setBackCompatKeepdimWarn(arg == Py_True); Py_RETURN_NONE; } static PyObject *THPModule_getBackcompatKeepdimWarn(PyObject *module) { if (getBackCompatKeepdimWarn()) Py_RETURN_TRUE; else Py_RETURN_FALSE; } PyObject *THPModule_hasDistributed(PyObject *_unused) { #ifdef WITH_DISTRIBUTED Py_RETURN_TRUE; #else Py_RETURN_FALSE; #endif } PyObject *THPModule_toDLPack(PyObject *_unused, PyObject *data) { THPUtils_assert(THPModule_isTensor(data), "data must be a Tensor"); auto atTensor = torch::createTensor(data); DLManagedTensor* dlMTensor = at::toDLPack(atTensor); return PyCapsule_New(dlMTensor, "dltensor", NULL); } PyObject *THPModule_fromDLPack(PyObject *_unused, PyObject *data) { DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor"); THPUtils_assert(dlMTensor, "from_dlpack received an invalid capsule. " "Note that DLTensor capsules can be consumed only once, " "so you might have already constructed a tensor from it once.") // atensor steals the ownership of the underlying storage. It also passes a // destructor function that will be called when the underlying storage goes // out of scope. When the destructor is called, the dlMTensor is destructed too. at::Tensor atensor = at::fromDLPack(dlMTensor); // Make sure this capsule will never be used again. PyCapsule_SetName(data, "used_dltensor"); return torch::createPyObject(atensor); } #ifdef WITH_CUDA extern PyObject * THCSPModule_initExtension(PyObject *self); #endif static PyMethodDef TorchMethods[] = { {"_initExtension", (PyCFunction)THPModule_initExtension, METH_O, NULL}, {"_autograd_init", (PyCFunction)THPAutograd_initExtension, METH_NOARGS, NULL}, {"_add_docstr", (PyCFunction)THPModule_addDocStr, METH_VARARGS, NULL}, {"_sparse_init", (PyCFunction)THSPModule_initExtension, METH_NOARGS, NULL}, {"_init_names", (PyCFunction)THPModule_initNames, METH_O, NULL}, {"_has_distributed",(PyCFunction)THPModule_hasDistributed, METH_NOARGS, NULL}, #ifdef WITH_CUDA {"_cuda_sparse_init", (PyCFunction)THCSPModule_initExtension, METH_NOARGS, NULL}, #endif {"_safe_call", (PyCFunction)THPModule_safeCall, METH_VARARGS | METH_KEYWORDS, NULL}, {"_set_default_tensor_type", (PyCFunction)THPModule_setDefaultTensorType, METH_O, NULL}, {"_infer_size", (PyCFunction)THPModule_inferSize, METH_VARARGS, NULL}, {"_set_backcompat_broadcast_warn", (PyCFunction)THPModule_setBackcompatBroadcastWarn, METH_O, NULL}, {"_get_backcompat_broadcast_warn", (PyCFunction)THPModule_getBackcompatBroadcastWarn, METH_NOARGS, NULL}, {"_set_backcompat_keepdim_warn", (PyCFunction)THPModule_setBackcompatKeepdimWarn, METH_O, NULL}, {"_get_backcompat_keepdim_warn", (PyCFunction)THPModule_getBackcompatKeepdimWarn, METH_NOARGS, NULL}, {"get_num_threads", (PyCFunction)THPModule_getNumThreads, METH_NOARGS, NULL}, {"set_num_threads", (PyCFunction)THPModule_setNumThreads, METH_O, NULL}, {"from_numpy", (PyCFunction)THPModule_fromNumpy, METH_O, NULL}, {"_to_dlpack", (PyCFunction)THPModule_toDLPack, METH_O, NULL}, {"_from_dlpack", (PyCFunction)THPModule_fromDLPack, METH_O, NULL}, {"sigmoid", (PyCFunction)THPModule_sigmoid, METH_VARARGS | METH_KEYWORDS, NULL}, {"log", (PyCFunction)THPModule_log, METH_VARARGS | METH_KEYWORDS, NULL}, {"log1p", (PyCFunction)THPModule_log1p, METH_VARARGS | METH_KEYWORDS, NULL}, {"lgamma", (PyCFunction)THPModule_lgamma, METH_VARARGS | METH_KEYWORDS, NULL}, {"erf", (PyCFunction)THPModule_erf, METH_VARARGS | METH_KEYWORDS, NULL}, {"erfinv", (PyCFunction)THPModule_erfinv, METH_VARARGS | METH_KEYWORDS, NULL}, {"exp", (PyCFunction)THPModule_exp, METH_VARARGS | METH_KEYWORDS, NULL}, {"cos", (PyCFunction)THPModule_cos, METH_VARARGS | METH_KEYWORDS, NULL}, {"acos", (PyCFunction)THPModule_acos, METH_VARARGS | METH_KEYWORDS, NULL}, {"cosh", (PyCFunction)THPModule_cosh, METH_VARARGS | METH_KEYWORDS, NULL}, {"sin", (PyCFunction)THPModule_sin, METH_VARARGS | METH_KEYWORDS, NULL}, {"asin", (PyCFunction)THPModule_asin, METH_VARARGS | METH_KEYWORDS, NULL}, {"sinh", (PyCFunction)THPModule_sinh, METH_VARARGS | METH_KEYWORDS, NULL}, {"tan", (PyCFunction)THPModule_tan, METH_VARARGS | METH_KEYWORDS, NULL}, {"atan", (PyCFunction)THPModule_atan, METH_VARARGS | METH_KEYWORDS, NULL}, {"tanh", (PyCFunction)THPModule_tanh, METH_VARARGS | METH_KEYWORDS, NULL}, {"sqrt", (PyCFunction)THPModule_sqrt, METH_VARARGS | METH_KEYWORDS, NULL}, {"rsqrt", (PyCFunction)THPModule_rsqrt, METH_VARARGS | METH_KEYWORDS, NULL}, {"ceil", (PyCFunction)THPModule_ceil, METH_VARARGS | METH_KEYWORDS, NULL}, {"floor", (PyCFunction)THPModule_floor, METH_VARARGS | METH_KEYWORDS, NULL}, {"round", (PyCFunction)THPModule_round, METH_VARARGS | METH_KEYWORDS, NULL}, {"abs", (PyCFunction)THPModule_abs, METH_VARARGS | METH_KEYWORDS, NULL}, {"trunc", (PyCFunction)THPModule_trunc, METH_VARARGS | METH_KEYWORDS, NULL}, {"frac", (PyCFunction)THPModule_frac, METH_VARARGS | METH_KEYWORDS, NULL}, {"mean", (PyCFunction)THPModule_mean, METH_VARARGS | METH_KEYWORDS, NULL}, {"std", (PyCFunction)THPModule_std, METH_VARARGS | METH_KEYWORDS, NULL}, {"var", (PyCFunction)THPModule_var, METH_VARARGS | METH_KEYWORDS, NULL}, {"norm", (PyCFunction)THPModule_norm, METH_VARARGS | METH_KEYWORDS, NULL}, {"reciprocal", (PyCFunction)THPModule_reciprocal, METH_VARARGS | METH_KEYWORDS, NULL}, {"neg", (PyCFunction)THPModule_neg, METH_VARARGS | METH_KEYWORDS, NULL}, {"add", (PyCFunction)THPModule_add, METH_VARARGS | METH_KEYWORDS, NULL}, {"mul", (PyCFunction)THPModule_mul, METH_VARARGS | METH_KEYWORDS, NULL}, {"div", (PyCFunction)THPModule_div, METH_VARARGS | METH_KEYWORDS, NULL}, {"fmod", (PyCFunction)THPModule_fmod, METH_VARARGS | METH_KEYWORDS, NULL}, {"min", (PyCFunction)THPModule_min, METH_VARARGS | METH_KEYWORDS, NULL}, {"max", (PyCFunction)THPModule_max, METH_VARARGS | METH_KEYWORDS, NULL}, {"dot", (PyCFunction)THPModule_dot, METH_VARARGS | METH_KEYWORDS, NULL}, {"sum", (PyCFunction)THPModule_sum, METH_VARARGS | METH_KEYWORDS, NULL}, {"prod", (PyCFunction)THPModule_prod, METH_VARARGS | METH_KEYWORDS, NULL}, {"remainder", (PyCFunction)THPModule_remainder, METH_VARARGS | METH_KEYWORDS, NULL}, {"cumsum", (PyCFunction)THPModule_cumsum, METH_VARARGS | METH_KEYWORDS, NULL}, {"cumprod", (PyCFunction)THPModule_cumprod, METH_VARARGS | METH_KEYWORDS, NULL}, {"clamp", (PyCFunction)THPModule_clamp, METH_VARARGS | METH_KEYWORDS, NULL}, {"equal", (PyCFunction)THPModule_equal, METH_VARARGS | METH_KEYWORDS, NULL}, {"eye", (PyCFunction)THPModule_eye, METH_VARARGS | METH_KEYWORDS, NULL}, {"diag", (PyCFunction)THPModule_diag, METH_VARARGS | METH_KEYWORDS, NULL}, {"numel", (PyCFunction)THPModule_numel, METH_VARARGS | METH_KEYWORDS, NULL}, {"sign", (PyCFunction)THPModule_sign, METH_VARARGS | METH_KEYWORDS, NULL}, {"trace", (PyCFunction)THPModule_trace, METH_VARARGS | METH_KEYWORDS, NULL}, {"tril", (PyCFunction)THPModule_tril, METH_VARARGS | METH_KEYWORDS, NULL}, {"triu", (PyCFunction)THPModule_triu, METH_VARARGS | METH_KEYWORDS, NULL}, {"zero", (PyCFunction)THPModule_zero, METH_VARARGS | METH_KEYWORDS, NULL}, {"gt", (PyCFunction)THPModule_gt, METH_VARARGS | METH_KEYWORDS, NULL}, {"lt", (PyCFunction)THPModule_lt, METH_VARARGS | METH_KEYWORDS, NULL}, {"ge", (PyCFunction)THPModule_ge, METH_VARARGS | METH_KEYWORDS, NULL}, {"le", (PyCFunction)THPModule_le, METH_VARARGS | METH_KEYWORDS, NULL}, {"eq", (PyCFunction)THPModule_eq, METH_VARARGS | METH_KEYWORDS, NULL}, {"ne", (PyCFunction)THPModule_ne, METH_VARARGS | METH_KEYWORDS, NULL}, {"kthvalue", (PyCFunction)THPModule_kthvalue, METH_VARARGS | METH_KEYWORDS, NULL}, {"mode", (PyCFunction)THPModule_mode, METH_VARARGS | METH_KEYWORDS, NULL}, {"median", (PyCFunction)THPModule_median, METH_VARARGS | METH_KEYWORDS, NULL}, {"cross", (PyCFunction)THPModule_cross, METH_VARARGS | METH_KEYWORDS, NULL}, {"sort", (PyCFunction)THPModule_sort, METH_VARARGS | METH_KEYWORDS, NULL}, {"topk", (PyCFunction)THPModule_topk, METH_VARARGS | METH_KEYWORDS, NULL}, {"t", (PyCFunction)THPModule_t, METH_VARARGS | METH_KEYWORDS, NULL}, {"transpose", (PyCFunction)THPModule_transpose, METH_VARARGS | METH_KEYWORDS, NULL}, {"squeeze", (PyCFunction)THPModule_squeeze, METH_VARARGS | METH_KEYWORDS, NULL}, {"unsqueeze", (PyCFunction)THPModule_unsqueeze, METH_VARARGS | METH_KEYWORDS, NULL}, {"nonzero", (PyCFunction)THPModule_nonzero, METH_VARARGS | METH_KEYWORDS, NULL}, {"renorm", (PyCFunction)THPModule_renorm, METH_VARARGS | METH_KEYWORDS, NULL}, {"dist", (PyCFunction)THPModule_dist, METH_VARARGS | METH_KEYWORDS, NULL}, {"linspace", (PyCFunction)THPModule_linspace, METH_VARARGS | METH_KEYWORDS, NULL}, {"logspace", (PyCFunction)THPModule_logspace, METH_VARARGS | METH_KEYWORDS, NULL}, {"histc", (PyCFunction)THPModule_histc, METH_VARARGS | METH_KEYWORDS, NULL}, {"atan2", (PyCFunction)THPModule_atan2, METH_VARARGS | METH_KEYWORDS, NULL}, {"pow", (PyCFunction)THPModule_pow, METH_VARARGS | METH_KEYWORDS, NULL}, {"lerp", (PyCFunction)THPModule_lerp, METH_VARARGS | METH_KEYWORDS, NULL}, {"zeros", (PyCFunction)THPModule_zeros, METH_VARARGS | METH_KEYWORDS, NULL}, {"zeros_like", (PyCFunction)THPModule_zeros_like, METH_VARARGS | METH_KEYWORDS, NULL}, {"ones", (PyCFunction)THPModule_ones, METH_VARARGS | METH_KEYWORDS, NULL}, {"ones_like", (PyCFunction)THPModule_ones_like, METH_VARARGS | METH_KEYWORDS, NULL}, {"index_select", (PyCFunction)THPModule_index_select, METH_VARARGS | METH_KEYWORDS, NULL}, {"take", (PyCFunction)THPModule_take, METH_VARARGS | METH_KEYWORDS, NULL}, {"addmm", (PyCFunction)THPModule_addmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"addmv", (PyCFunction)THPModule_addmv, METH_VARARGS | METH_KEYWORDS, NULL}, {"addr", (PyCFunction)THPModule_addr, METH_VARARGS | METH_KEYWORDS, NULL}, {"ger", (PyCFunction)THPModule_ger, METH_VARARGS | METH_KEYWORDS, NULL}, {"mv", (PyCFunction)THPModule_mv, METH_VARARGS | METH_KEYWORDS, NULL}, {"addbmm", (PyCFunction)THPModule_addbmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"baddbmm", (PyCFunction)THPModule_baddbmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"addcmul", (PyCFunction)THPModule_addcmul, METH_VARARGS | METH_KEYWORDS, NULL}, {"addcdiv", (PyCFunction)THPModule_addcdiv, METH_VARARGS | METH_KEYWORDS, NULL}, {"mm", (PyCFunction)THPModule_mm, METH_VARARGS | METH_KEYWORDS, NULL}, {"bmm", (PyCFunction)THPModule_bmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"multinomial", (PyCFunction)THPModule_multinomial, METH_VARARGS | METH_KEYWORDS, NULL}, {"normal", (PyCFunction)THPModule_normal, METH_VARARGS | METH_KEYWORDS, NULL}, {"_standard_gamma", (PyCFunction)THPModule_standard_gamma, METH_VARARGS | METH_KEYWORDS, NULL}, {"bernoulli", (PyCFunction)THPModule_bernoulli, METH_VARARGS | METH_KEYWORDS, NULL}, {"rand", (PyCFunction)THPModule_rand, METH_VARARGS | METH_KEYWORDS, NULL}, {"randn", (PyCFunction)THPModule_randn, METH_VARARGS | METH_KEYWORDS, NULL}, {"randperm", (PyCFunction)THPModule_randperm, METH_VARARGS | METH_KEYWORDS, NULL}, {"range", (PyCFunction)THPModule_range, METH_VARARGS | METH_KEYWORDS, NULL}, {"arange", (PyCFunction)THPModule_arange, METH_VARARGS | METH_KEYWORDS, NULL}, {"gather", (PyCFunction)THPModule_gather, METH_VARARGS | METH_KEYWORDS, NULL}, {"cat", (PyCFunction)THPModule_cat, METH_VARARGS | METH_KEYWORDS, NULL}, {"masked_select", (PyCFunction)THPModule_masked_select, METH_VARARGS | METH_KEYWORDS, NULL}, {"gesv", (PyCFunction)THPModule_gesv, METH_VARARGS | METH_KEYWORDS, NULL}, {"gels", (PyCFunction)THPModule_gels, METH_VARARGS | METH_KEYWORDS, NULL}, {"trtrs", (PyCFunction)THPModule_trtrs, METH_VARARGS | METH_KEYWORDS, NULL}, {"symeig", (PyCFunction)THPModule_symeig, METH_VARARGS | METH_KEYWORDS, NULL}, {"eig", (PyCFunction)THPModule_eig, METH_VARARGS | METH_KEYWORDS, NULL}, {"svd", (PyCFunction)THPModule_svd, METH_VARARGS | METH_KEYWORDS, NULL}, {"inverse", (PyCFunction)THPModule_inverse, METH_VARARGS | METH_KEYWORDS, NULL}, {"potrf", (PyCFunction)THPModule_potrf, METH_VARARGS | METH_KEYWORDS, NULL}, {"potrs", (PyCFunction)THPModule_potrs, METH_VARARGS | METH_KEYWORDS, NULL}, {"potri", (PyCFunction)THPModule_potri, METH_VARARGS | METH_KEYWORDS, NULL}, {"pstrf", (PyCFunction)THPModule_pstrf, METH_VARARGS | METH_KEYWORDS, NULL}, {"qr", (PyCFunction)THPModule_qr, METH_VARARGS | METH_KEYWORDS, NULL}, {"geqrf", (PyCFunction)THPModule_geqrf, METH_VARARGS | METH_KEYWORDS, NULL}, {"orgqr", (PyCFunction)THPModule_orgqr, METH_VARARGS | METH_KEYWORDS, NULL}, {"ormqr", (PyCFunction)THPModule_ormqr, METH_VARARGS | METH_KEYWORDS, NULL}, {"btrifact", (PyCFunction)THPModule_btrifact, METH_VARARGS | METH_KEYWORDS, NULL}, {"btrisolve", (PyCFunction)THPModule_btrisolve, METH_VARARGS | METH_KEYWORDS, NULL}, // Sparse functions {"smm", (PyCFunction)THSPModule_sspmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"saddmm", (PyCFunction)THSPModule_sspaddmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"dsmm", (PyCFunction)THSPModule_spmm, METH_VARARGS | METH_KEYWORDS, NULL}, {"hsmm", (PyCFunction)THSPModule_hspmm, METH_VARARGS | METH_KEYWORDS, NULL}, {NULL, NULL, 0, NULL} }; bool THCPDoubleStorage_init(PyObject *module); bool THCPFloatStorage_init(PyObject *module); bool THCPHalfStorage_init(PyObject *module); bool THCPLongStorage_init(PyObject *module); bool THCPIntStorage_init(PyObject *module); bool THCPShortStorage_init(PyObject *module); bool THCPCharStorage_init(PyObject *module); bool THCPByteStorage_init(PyObject *module); bool THCPDoubleTensor_init(PyObject *module); bool THCPFloatTensor_init(PyObject *module); bool THCPHalfTensor_init(PyObject *module); bool THCPLongTensor_init(PyObject *module); bool THCPIntTensor_init(PyObject *module); bool THCPShortTensor_init(PyObject *module); bool THCPCharTensor_init(PyObject *module); bool THCPByteTensor_init(PyObject *module); bool THCPStream_init(PyObject *module); #ifdef WITH_CUDA PyMethodDef* THCPModule_methods(); #endif bool THCSPDoubleTensor_init(PyObject *module); bool THCSPFloatTensor_init(PyObject *module); bool THCSPHalfTensor_init(PyObject *module); bool THCSPLongTensor_init(PyObject *module); bool THCSPIntTensor_init(PyObject *module); bool THCSPShortTensor_init(PyObject *module); bool THCSPCharTensor_init(PyObject *module); bool THCSPByteTensor_init(PyObject *module); bool THDPDoubleStorage_init(PyObject *module); bool THDPFloatStorage_init(PyObject *module); //bool THDPHalfStorage_init(PyObject *module); bool THDPLongStorage_init(PyObject *module); bool THDPIntStorage_init(PyObject *module); bool THDPShortStorage_init(PyObject *module); bool THDPCharStorage_init(PyObject *module); bool THDPByteStorage_init(PyObject *module); bool THDPDoubleTensor_init(PyObject *module); bool THDPFloatTensor_init(PyObject *module); //bool THDPHalfTensor_init(PyObject *module); bool THDPLongTensor_init(PyObject *module); bool THDPIntTensor_init(PyObject *module); bool THDPShortTensor_init(PyObject *module); bool THDPCharTensor_init(PyObject *module); bool THDPByteTensor_init(PyObject *module); static std::vector methods; #ifdef WITH_DISTRIBUTED PyMethodDef* THDPModule_methods(); #endif // TODO: Refactor this in some less manual way #ifdef WITH_CUDNN static PyObject * THCUDNN_cudnn_version(PyObject *self, PyObject *args) { return PyLong_FromLong(CUDNN_VERSION); } static PyMethodDef _THCUDNN_methods[] = { {"_cudnn_version", (PyCFunction)THCUDNN_cudnn_version, METH_VARARGS, NULL}, {NULL} }; PyMethodDef* THCUDNN_methods() { return _THCUDNN_methods; } #endif static PyObject* initModule() { HANDLE_TH_ERRORS THInferNumThreads(); #define ASSERT_TRUE(cmd) if (!(cmd)) return NULL THPUtils_addPyMethodDefs(methods, TorchMethods); THPUtils_addPyMethodDefs(methods, DataLoaderMethods); #ifdef WITH_CUDA THPUtils_addPyMethodDefs(methods, THCPModule_methods()); #endif #ifdef WITH_CUDNN THPUtils_addPyMethodDefs(methods, THCUDNN_methods()); #endif #ifdef WITH_DISTRIBUTED THPUtils_addPyMethodDefs(methods, THDPModule_methods()); #endif #if PY_MAJOR_VERSION == 2 ASSERT_TRUE(module = Py_InitModule("torch._C", methods.data())); #else static struct PyModuleDef torchmodule = { PyModuleDef_HEAD_INIT, "torch._C", NULL, -1, methods.data() }; ASSERT_TRUE(module = PyModule_Create(&torchmodule)); #endif ASSERT_TRUE(THPWrapper_init(module)); ASSERT_TRUE(THPGenerator_init(module)); ASSERT_TRUE(THPException_init(module)); ASSERT_TRUE(THPSize_init(module)); ASSERT_TRUE(THPVariable_initModule(module)); ASSERT_TRUE(THPFunction_initModule(module)); ASSERT_TRUE(THPEngine_initModule(module)); torch::autograd::initAutogradClosureBindings(module); torch::jit::initJITBindings(module); torch::autograd::initNNFunctions(module); ASSERT_TRUE(THPDoubleStorage_init(module)); ASSERT_TRUE(THPFloatStorage_init(module)); ASSERT_TRUE(THPHalfStorage_init(module)); ASSERT_TRUE(THPLongStorage_init(module)); ASSERT_TRUE(THPIntStorage_init(module)); ASSERT_TRUE(THPShortStorage_init(module)); ASSERT_TRUE(THPCharStorage_init(module)); ASSERT_TRUE(THPByteStorage_init(module)); ASSERT_TRUE(THPDoubleTensor_init(module)); ASSERT_TRUE(THPFloatTensor_init(module)); ASSERT_TRUE(THPHalfTensor_init(module)); ASSERT_TRUE(THPLongTensor_init(module)); ASSERT_TRUE(THPIntTensor_init(module)); ASSERT_TRUE(THPShortTensor_init(module)); ASSERT_TRUE(THPCharTensor_init(module)); ASSERT_TRUE(THPByteTensor_init(module)); ASSERT_TRUE(THSPDoubleTensor_init(module)); ASSERT_TRUE(THSPFloatTensor_init(module)); ASSERT_TRUE(THSPLongTensor_init(module)); ASSERT_TRUE(THSPIntTensor_init(module)); ASSERT_TRUE(THSPShortTensor_init(module)); ASSERT_TRUE(THSPCharTensor_init(module)); ASSERT_TRUE(THSPByteTensor_init(module)); #ifdef WITH_CUDA // This will only initialise base classes and attach them to library namespace // They won't be ready for real usage until importing cuda module, that will // complete the process (but it defines Python classes before calling back into // C, so these lines have to execute first).. ASSERT_TRUE(THCPDoubleStorage_init(module)); ASSERT_TRUE(THCPFloatStorage_init(module)); ASSERT_TRUE(THCPHalfStorage_init(module)); ASSERT_TRUE(THCPLongStorage_init(module)); ASSERT_TRUE(THCPIntStorage_init(module)); ASSERT_TRUE(THCPShortStorage_init(module)); ASSERT_TRUE(THCPCharStorage_init(module)); ASSERT_TRUE(THCPByteStorage_init(module)); ASSERT_TRUE(THCPDoubleTensor_init(module)); ASSERT_TRUE(THCPFloatTensor_init(module)); ASSERT_TRUE(THCPHalfTensor_init(module)); ASSERT_TRUE(THCPLongTensor_init(module)); ASSERT_TRUE(THCPIntTensor_init(module)); ASSERT_TRUE(THCPShortTensor_init(module)); ASSERT_TRUE(THCPCharTensor_init(module)); ASSERT_TRUE(THCPByteTensor_init(module)); ASSERT_TRUE(THCPStream_init(module)); ASSERT_TRUE(THCSPDoubleTensor_init(module)); ASSERT_TRUE(THCSPFloatTensor_init(module)); ASSERT_TRUE(THCSPHalfTensor_init(module)); ASSERT_TRUE(THCSPLongTensor_init(module)); ASSERT_TRUE(THCSPIntTensor_init(module)); ASSERT_TRUE(THCSPShortTensor_init(module)); ASSERT_TRUE(THCSPCharTensor_init(module)); ASSERT_TRUE(THCSPByteTensor_init(module)); #endif #ifdef WITH_CUDNN PyObject *has_cudnn = Py_True; #else PyObject *has_cudnn = Py_False; #endif Py_INCREF(has_cudnn); ASSERT_TRUE(PyModule_AddObject(module, "has_cudnn", has_cudnn) == 0); #ifdef WITH_DISTRIBUTED_MW // See comment on CUDA objects ASSERT_TRUE(THDPDoubleStorage_init(module)); ASSERT_TRUE(THDPFloatStorage_init(module)); //ASSERT_TRUE(THDPHalfStorage_init(module)); ASSERT_TRUE(THDPLongStorage_init(module)); ASSERT_TRUE(THDPIntStorage_init(module)); ASSERT_TRUE(THDPShortStorage_init(module)); ASSERT_TRUE(THDPCharStorage_init(module)); ASSERT_TRUE(THDPByteStorage_init(module)); ASSERT_TRUE(THDPDoubleTensor_init(module)); ASSERT_TRUE(THDPFloatTensor_init(module)); //ASSERT_TRUE(THDPHalfTensor_init(module)); ASSERT_TRUE(THDPLongTensor_init(module)); ASSERT_TRUE(THDPIntTensor_init(module)); ASSERT_TRUE(THDPShortTensor_init(module)); ASSERT_TRUE(THDPCharTensor_init(module)); ASSERT_TRUE(THDPByteTensor_init(module)); #endif // force ATen to initialize because it handles // setting up TH Errors so that they throw C++ exceptions at::init(); auto& defaultGenerator = at::globalContext().defaultGenerator(at::kCPU); THPDefaultGenerator = (THPGenerator*)THPGenerator_NewWithGenerator( defaultGenerator); ASSERT_TRUE(PyModule_AddObject(module, "default_generator", (PyObject*)THPDefaultGenerator) == 0); #ifdef WITH_NUMPY if (_import_array() < 0) return NULL; #endif return module; END_HANDLE_TH_ERRORS } #if PY_MAJOR_VERSION == 2 PyMODINIT_FUNC init_C() #else PyMODINIT_FUNC PyInit__C() #endif { #if PY_MAJOR_VERSION == 2 initModule(); #else return initModule(); #endif }