# Torch from torch.autograd import Variable from torch.autograd.function import _nested_map from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401 from torch.onnx import OperatorExportTypes import torch import torch.cuda import torch.jit import torch.jit._logging import torch.jit.frontend import torch.jit.quantized import zipfile import functools # Testing utils from torch.testing import FileCheck from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, \ freeze_rng_state, TemporaryFileName, enable_profiling_mode_for_profiling_tests, ProfilingMode, TEST_BAILOUTS from torch.testing._internal.common_utils import enable_profiling_mode # noqa: F401 # Standard library from contextlib import contextmanager from functools import reduce from itertools import chain from torch._six import StringIO from typing import Any, Dict from collections import defaultdict import inspect import io import math import os import pickle import sys import tempfile import textwrap from typing import List, Dict RUN_CUDA = torch.cuda.is_available() RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1 RUN_CUDA_HALF = RUN_CUDA # HIP supports half, no version check necessary if torch.cuda.is_available() and not torch.version.hip: CUDA_VERSION = torch._C._cuda_getCompiledVersion() for d in range(torch.cuda.device_count()): major = torch.cuda.get_device_capability(d)[0] if (major < 6): RUN_CUDA_HALF = False def execWrapper(code, glob, loc): exec(code, glob, loc) def do_input_map(fn, input): return _nested_map(lambda t: isinstance(t, torch.Tensor), fn)(input) def clear_class_registry(): torch._C._jit_clear_class_registry() torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() def get_execution_plan(graph_executor_state): execution_plans = list(graph_executor_state.execution_plans.values()) num_plans = len(execution_plans) if num_plans != 1: raise RuntimeError('This test assumes this GraphExecutor should ' 'only have one execution plan, got: {}'.format(num_plans)) return execution_plans[0] class _AssertRaisesRegexWithHighlightContext(object): """ A context manager that is useful for checking that error messages highlight the correct part of the source code. """ def __init__(self, test_case, exception, regex, highlight): self.test_case = test_case self.exception_type = exception self.regex = regex self.highlight = highlight def __enter__(self): return self def __exit__(self, type, value, traceback): with self.test_case.assertRaisesRegex(self.exception_type, self.regex): if type: raise value if self.highlight: FileCheck().check_source_highlighted(self.highlight).run(str(value)) return True FUSION_GROUP = "prim::TensorExprGroup" class JitTestCase(TestCase): _do_cuda_memory_leak_check = True _restored_warnings = False class capture_stdout(list): """ Replace sys.stdout with a temporary StringIO """ def __enter__(self): self.sys_stdout = sys.stdout self.stringio = StringIO() sys.stdout = self.stringio return self def __exit__(self, *args): self.append(str(self.stringio.getvalue())) del self.stringio sys.stdout = self.sys_stdout def setHooks(self): torch._C._jit_set_emit_hooks(self.emitModuleHook, self.emitFunctionHook) def clearHooks(self): torch._C._jit_set_emit_hooks(None, None) def setUp(self): super().setUp() # unittest overrides all warning filters and forces all of them to show up # after we install our own to silence those coming from inside PyTorch. # This will ensure that our filter still takes precedence. if not JitTestCase._restored_warnings: torch.jit.TracerWarning.ignore_lib_warnings() JitTestCase._restored_warnings = True self.setHooks() def tearDown(self): super().tearDown() # needs to be cleared because python might be unloaded before # the callback gets destucted self.clearHooks() clear_class_registry() def assertAllFused(self, graph, except_for=()): # note this helper collects nodes on 'fast path' only # i.e. the true blocks of specialized checks def get_nodes_and_parents_recursively(block, kind, acc): for node in block.nodes(): if node.kind() == kind: acc[block].append(node) elif node.kind() == 'prim::DifferentiableGraph': get_nodes_and_parents_recursively(node.g('Subgraph'), kind, acc) elif node.kind() == 'prim::If' and (node.inputs().__next__().node().kind() == 'aten::all' or node.inputs().__next__().node().kind() == 'prim::TypeCheck'): get_nodes_and_parents_recursively(node.blocks().__next__(), kind, acc) else: for inner_block in node.blocks(): get_nodes_and_parents_recursively(inner_block, kind, acc) allowed_nodes = {'prim::Constant', FUSION_GROUP, 'prim::BailoutTemplate', 'prim::TupleConstruct', 'prim::If', 'prim::TypeCheck'} | set(except_for) fusion_groups : Dict[torch._C.Block, List[torch._C.Node]] = defaultdict(list) get_nodes_and_parents_recursively(graph, FUSION_GROUP, fusion_groups) self.assertTrue(len(fusion_groups) == 1, 'got {}'.format(graph)) (graph, fusion_nodes) = list(fusion_groups.items())[0] # the block contains one FUSION_GROUP and the rest of nodes are `allowed_nodes` self.assertTrue(len(fusion_nodes) == 1, 'got {}'.format(graph)) self.assertTrue(all(node.kind() in allowed_nodes for node in graph.nodes()), 'got {}'.format(graph)) def _isHookExceptionOk(self, e): se = str(e) allowed = ("Could not export Python function", "closures are not exportable") for a in allowed: if a in se: return True return False def _compared_saved_loaded(self, m): def extract_files(buffer): # crack open the zip format to get at the main module code archive = zipfile.ZipFile(buffer) # check that we have no duplicate names self.assertEqual(len(set(archive.namelist())), len(archive.namelist())) files = list(filter(lambda x: x.startswith('archive/code/'), archive.namelist())) # unwrap all the code files into strings code_files_str = filter(lambda x: x.endswith('.py'), files) code_files_stream = map(lambda f: archive.open(f), code_files_str) code_files = map(lambda file: "".join([line.decode() for line in file]), code_files_stream) # unpickled all the debug files debug_files_str = filter(lambda f: f.endswith('.debug_pkl'), files) debug_files_stream = map(lambda f: archive.open(f), debug_files_str) debug_files = map(lambda f: pickle.load(f), debug_files_stream) return code_files, debug_files # disable the hook while we parse code, otherwise we will re-enter the hook with torch._jit_internal._disable_emit_hooks(): try: # short-circuit if this is an empty function or module if len(m.code) == 0: return if isinstance(m, torch._C.ScriptModule): if len(m._method_names()) == 0: return # save the module to a buffer buffer = io.BytesIO() torch.jit.save(m, buffer) # copy the data in the buffer so we can restore it later. This # is because py2 and py3 have different semantics with zipfile # and it's easier to just work with a fresh copy each time. buffer_copy = buffer.getvalue() code_files, debug_files = extract_files(buffer) except RuntimeError as e: if not self._isHookExceptionOk(e): raise else: return # import the model again (from a the copy we made of the original) buffer2 = io.BytesIO(buffer_copy) imported = torch.jit.load(buffer2) # save it again saved_module_buffer_2 = io.BytesIO() torch.jit.save(imported, saved_module_buffer_2) saved_module_buffer_2.seek(0) code_files_2, debug_files_2 = extract_files(saved_module_buffer_2) for a, b in zip(code_files, code_files_2): self.assertMultiLineEqual(a, b) if isinstance(m, torch._C.ScriptModule): self.assertTrue(torch._C._ivalue_tags_match(m, imported._c)) def emitFunctionHook(self, func): # func has invalid names for export, skip the jitter check if func.name == "" or "aten::" in func.name: return self._compared_saved_loaded(func) def emitModuleHook(self, module): self._compared_saved_loaded(module) def getExportImportCopy(self, m, also_test_file=True, map_location=None): buffer = io.BytesIO() torch.jit.save(m, buffer) buffer.seek(0) imported = torch.jit.load(buffer, map_location=map_location) if not also_test_file: return imported with TemporaryFileName() as fname: torch.jit.save(imported, fname) return torch.jit.load(fname, map_location=map_location) def getExportImportCopyWithPacking(self, m, also_test_file=True, map_location=None): buffer = io.BytesIO() m.apply(lambda s: s._pack() if s._c._has_method('_pack') else None) torch.jit.save(m, buffer) m.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None) buffer.seek(0) imported = torch.jit.load(buffer, map_location=map_location) imported.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None) if not also_test_file: return imported # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile # opens the file, and it cannot be opened multiple times in Windows. To support Windows, # close the file after creation and try to remove it manually f = tempfile.NamedTemporaryFile(delete=False) try: f.close() imported.save(f.name) result = torch.jit.load(f.name, map_location=map_location) finally: os.unlink(f.name) result.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None) return result def assertGraphContains(self, graph, kind): self.assertTrue(any(n.kind() == kind for n in graph.nodes())) def assertGraphContainsExactly(self, graph, kind, num_kind_nodes, consider_subgraphs=False): def perform_assert(graph, kind, actual, expected, consider_subgraphs): if actual == expected: return subgraph = 'including' if consider_subgraphs else 'excluding' raise AssertionError( '{}\nError: graph contains {} {} nodes ({} subgraphs) but expected {}'.format( graph, actual, kind, subgraph, expected)) if consider_subgraphs: strgraph = str(graph) count = strgraph.count(kind) - strgraph.count('with {}'.format(kind)) perform_assert(graph, kind, count, num_kind_nodes, consider_subgraphs) return def nodes(block): out = [] for node in block.nodes(): if node.kind() == kind: out.append(node) for block in node.blocks(): out += nodes(block) return out out_nodes = nodes(graph) perform_assert(graph, kind, len(out_nodes), num_kind_nodes, consider_subgraphs) def assertExpectedONNXGraph(self, g, *args, **kwargs): g = torch.onnx._optimize_trace(g, operator_export_type=OperatorExportTypes.ONNX) self.assertExpectedGraph(g, *args, **kwargs) def assertExpectedGraph(self, trace, *args, **kwargs): if isinstance(trace, torch._C.Graph): graph = trace else: graph = trace.graph() torch._C._jit_pass_lint(graph) torch._C._jit_pass_dce(graph) torch._C._jit_pass_lint(graph) graph = torch._C._jit_pass_canonicalize(graph) torch._C._jit_pass_lint(graph) self.assertExpected(str(graph), *args, **kwargs) def assertAutodiffNode(self, graph, should_autodiff_node, nonfusible_nodes, fusible_nodes): diff_nodes = graph.findAllNodes('prim::DifferentiableGraph') diff_subgraphs = [node.g('Subgraph') for node in diff_nodes] # For any non-fusible node, it must show up in one of the DifferentiableGraph. found_all_nonfusible_nodes = (len(diff_subgraphs) == 0 and len(nonfusible_nodes) == 0)\ or all([any(g.findNode(n) is not None for g in diff_subgraphs) for n in nonfusible_nodes]) # For any fusible node, it must show up in one of the FusionGroup in the DifferentiableGraph. fusion_nodes = list(chain.from_iterable([g.findAllNodes('prim::FusionGroup') for g in diff_subgraphs])) fusion_subgraphs = [node.g('Subgraph') for node in fusion_nodes] found_all_fusible_nodes = (len(fusion_nodes) == 0 and len(fusible_nodes) == 0)\ or all([any(g.findNode(n) is not None for g in fusion_subgraphs) for n in fusible_nodes]) self.assertEqual(should_autodiff_node, found_all_nonfusible_nodes and found_all_fusible_nodes) def run_pass(self, name, trace): if isinstance(trace, torch._C.Graph): graph = trace set_graph = False else: set_graph = True graph = trace.graph() torch._C._jit_pass_lint(graph) result = getattr(torch._C, '_jit_pass_' + name)(graph) if result is not None: graph = result torch._C._jit_pass_lint(graph) if set_graph: trace.set_graph(graph) return graph def get_frame_vars(self, frames_up): frame = inspect.currentframe() if not frame: raise RuntimeError("failed to inspect frame") i = 0 while i < frames_up + 1: frame = frame.f_back if not frame: raise RuntimeError("failed to get frame") i += 1 defined_vars: Dict[str, Any] = {} defined_vars.update(frame.f_locals) defined_vars.update(frame.f_globals) return defined_vars def assertRaisesRegexWithHighlight(self, exception, regex, highlight): return _AssertRaisesRegexWithHighlightContext(self, exception, regex, highlight) def checkScriptRaisesRegex(self, script, inputs, exception, regex, outputs=None, capture_output=False, profiling=ProfilingMode.PROFILING): """ Checks that a given function will throw the correct exception, when executed with normal python, the string frontend, and the AST frontend """ with enable_profiling_mode_for_profiling_tests(): # normal python with self.assertRaisesRegex(exception, regex): script(*inputs) # string frontend with self.assertRaisesRegex(exception, regex): source = textwrap.dedent(inspect.getsource(script)) cu = torch.jit.CompilationUnit(source) ge = getattr(cu, script.__name__) # profiling run with self.assertRaisesRegex(exception, regex): ge(*inputs) # optimized run ge(*inputs) # python AST frontend with self.assertRaisesRegex(exception, regex): ge = torch.jit.script(script) # profiling run with self.assertRaisesRegex(exception, regex): ge(*inputs) # optimized run ge(*inputs) def checkBailouts(self, model, inputs, expected): state = model.get_debug_state() plan = get_execution_plan(state) num_bailouts = plan.code.num_bailouts() for i in range(0, num_bailouts): plan.code.request_bailout(i) bailout_outputs = model(*inputs) self.assertEqual(bailout_outputs, expected) def checkScript(self, script, inputs, name='func', optimize=True, inputs_requires_grad=False, capture_output=False, frames_up=1, profiling=ProfilingMode.PROFILING): with torch.jit.optimized_execution(optimize): with enable_profiling_mode_for_profiling_tests(): if isinstance(script, str): # Compile the string to a Script function # with enable_profiling_mode(): cu = torch.jit.CompilationUnit(script, _frames_up=frames_up) # Execute the Python function so we can run it later and get its # outputs frame = self.get_frame_vars(frames_up) the_locals: Dict[str, Any] = {} execWrapper(script, glob=frame, loc=the_locals) frame.update(the_locals) python_fn = frame[name] scripted_fn = getattr(cu, name) else: # Check the string frontend first source = textwrap.dedent(inspect.getsource(script)) self.checkScript( source, inputs, script.__name__, optimize=optimize, inputs_requires_grad=inputs_requires_grad, capture_output=capture_output, profiling=profiling, frames_up=2) # Continue checking the Python frontend scripted_fn = torch.jit.script(script, _frames_up=1) python_fn = script if inputs_requires_grad: recording_inputs = do_input_map(lambda t: t.detach().requires_grad_(), inputs) else: recording_inputs = inputs if capture_output: with self.capture_stdout() as script_stdout: script_outputs = scripted_fn(*recording_inputs) with self.capture_stdout() as opt_script_stdout: opt_script_outputs = scripted_fn(*recording_inputs) with self.capture_stdout() as _python_stdout: python_outputs = python_fn(*inputs) if not IS_WINDOWS: self.assertExpected(script_stdout[0], subname='stdout') self.assertEqual(python_outputs, opt_script_outputs) else: # profiling run script_outputs = scripted_fn(*recording_inputs) # optimized run opt_script_outputs = scripted_fn(*recording_inputs) if TEST_BAILOUTS: self.checkBailouts(scripted_fn, inputs, opt_script_outputs) python_outputs = python_fn(*inputs) self.assertEqual(python_outputs, script_outputs) self.assertEqual(script_outputs, opt_script_outputs) return scripted_fn def checkTrace(self, func, reference_tensors, input_tensors=None, drop=None, allow_unused=False, verbose=False, inputs_require_grads=True, check_tolerance=1e-5, export_import=True, _force_outplace=False): # TODO: check gradients for parameters, not just inputs def allSum(vs): # drop allows us to remove some values from ever being used # to test unused outputs if drop is not None: vs = vs[:-drop] # we don't want all the grad for all the outputs to be the same # so we multiply each by a constant return sum(math.log(i + 2) * v.sum() for i, v in enumerate(vs) if v is not None) if input_tensors is None: input_tensors = reference_tensors def flatten_inputs(inputs): def input_reduce(input, fn, acc): if isinstance(input, torch.Tensor): fn(input, acc) elif isinstance(input, dict): reduce(lambda acc, key: input_reduce(input[key], fn, acc), input, acc) else: reduce(lambda acc, val: input_reduce(val, fn, acc), input, acc) return acc return tuple(input_reduce(recording_inputs, lambda t, acc: acc.append(t), [])) nograd_inputs = reference_tensors if inputs_require_grads: recording_inputs = do_input_map(lambda t: t.clone().requires_grad_(), reference_tensors) flattened_recording_inputs = flatten_inputs(recording_inputs) else: recording_inputs = reference_tensors # `check_trace` is set to False because check_trace is run with @no_grad # Also, `checkTrace` already does all the checks # against python function ge = torch.jit.trace(func, input_tensors, check_tolerance=check_tolerance, _force_outplace=_force_outplace, check_trace=False) if export_import: ge = self.getExportImportCopy(ge) if verbose: print(ge.graph) # test no gradients case outputs = func(*nograd_inputs) outputs_ge = ge(*nograd_inputs) self.assertEqual(outputs, outputs_ge) # test gradients case outputs = func(*recording_inputs) if inputs_require_grads: grads = torch.autograd.grad(allSum(outputs), flattened_recording_inputs, allow_unused=allow_unused) outputs_ge = ge(*recording_inputs) if inputs_require_grads: grads_ge = torch.autograd.grad(allSum(outputs_ge), flattened_recording_inputs, allow_unused=allow_unused) self.assertEqual(outputs, outputs_ge) if inputs_require_grads: self.assertEqual(grads, grads_ge) self.assertEqual(outputs, outputs_ge) if inputs_require_grads: self.assertEqual(grads, grads_ge) # test the grad grad case outputs = func(*recording_inputs) l1 = allSum(outputs) if inputs_require_grads: grads = torch.autograd.grad(l1, flattened_recording_inputs, create_graph=True, allow_unused=allow_unused) if inputs_require_grads: l2 = (allSum(grads) * l1) grads2 = torch.autograd.grad(l2, flattened_recording_inputs, allow_unused=allow_unused) if inputs_require_grads: recording_inputs = do_input_map(lambda t: Variable(t, requires_grad=True), reference_tensors) flattened_recording_inputs = flatten_inputs(recording_inputs) outputs_ge = ge(*recording_inputs) l1_ge = allSum(outputs_ge) if inputs_require_grads: grads_ge = torch.autograd.grad( l1_ge, flattened_recording_inputs, create_graph=True, allow_unused=allow_unused) if inputs_require_grads: l2_ge = (allSum(grads_ge) * l1_ge) grads2_ge = torch.autograd.grad(l2_ge, flattened_recording_inputs, allow_unused=allow_unused) self.assertEqual(outputs, outputs_ge) if inputs_require_grads: self.assertEqual(grads, grads_ge) for g2, g2_ge in zip(grads2, grads2_ge): if g2 is None and g2_ge is None: continue self.assertTrue(torch.allclose(g2, g2_ge, atol=8e-4, rtol=8e-4)) return ge def createFunctionFromGraph(self, trace): graph = trace if isinstance(trace, torch._C.Graph) else trace.graph() return torch._C._create_function_from_graph("forward", graph) def assertExportImport(self, trace, inputs): m = self.createFunctionFromGraph(trace) self.assertExportImportModule(m, inputs) def assertExportImportModule(self, m, inputs): m_import = self.getExportImportCopy(m) a = self.runAndSaveRNG(m, inputs) b = self.runAndSaveRNG(m_import, inputs) self.assertEqual(a, b) def runAndSaveRNG(self, func, inputs, kwargs=None): kwargs = kwargs if kwargs else {} with freeze_rng_state(): results = func(*inputs, **kwargs) return results def checkModule(self, nn_module, args): """ Check that a nn.Module's results in Script mode match eager and that it can be exported """ sm = torch.jit.script(nn_module) with freeze_rng_state(): eager_out = nn_module(*args) with freeze_rng_state(): script_out = sm(*args) self.assertEqual(eager_out, script_out) self.assertExportImportModule(sm, args) return sm @contextmanager def inline_everything_mode(should_inline): old = torch._C._jit_get_inline_everything_mode() torch._C._jit_set_inline_everything_mode(should_inline) try: yield finally: torch._C._jit_set_inline_everything_mode(old) # note: not re-entrant, use unnested only @contextmanager def disable_autodiff_subgraph_inlining(enabled=True): torch._C._debug_set_autodiff_subgraph_inlining(not enabled) try: yield finally: torch._C._debug_set_autodiff_subgraph_inlining(True) def _inline_everything(fn): @functools.wraps(fn) def wrapper(*args, **kwargs): with inline_everything_mode(True): fn(*args, **kwargs) return wrapper # this exists for forward compatibility reasons temporarily. # TODO(suo) remove def _tmp_donotuse_dont_inline_everything(fn): @functools.wraps(fn) def wrapper(*args, **kwargs): with inline_everything_mode(False): fn(*args, **kwargs) return wrapper # make it easy to quicky define/trace a function for these tests def _trace(*args, **kwargs): def wrapper(func): return torch.jit.trace(func, args, **kwargs) return wrapper def enable_cpu_fuser(fn): def wrapper(*args, **kwargs): torch._C._jit_override_can_fuse_on_cpu(True) try: fn(*args, **kwargs) finally: torch._C._jit_override_can_fuse_on_cpu(False) return wrapper def enable_cpu_fuser_if(cond): if cond: return enable_cpu_fuser else: def noop_fuser(fn): def wrapper(*args, **kwargs): return fn(*args, **kwargs) return wrapper return noop_fuser def get_forward(c): return c._get_method('forward') def get_forward_graph(c): return c._get_method('forward').graph def get_module_method(m, module, method): return m._c.getattr(module)._get_method(method) def attrs_with_prefix(module, prefix): return [x for x, _ in module._modules._c.items() if x.startswith(prefix)] def warmup_backward(f, *args): profiling_count = 2 results = [] for i in range(profiling_count): if len(args) > 0: r = torch.autograd.grad(f, *args) results.append(r) else: f.backward(retain_graph=True) return results