from __future__ import annotations import itertools from contextlib import contextmanager from itertools import chain from threading import local from typing import Any, Callable, Union from unittest.mock import patch import sympy from torch._inductor.utils import IndentedBuffer from torch.fx.graph import inplace_methods, magic_methods from .utils import reduction_num_outputs, sympy_str, sympy_symbol threadlocal = local() class Virtualized: """ A global variable that redirects via thread local variable This allows us to swap in different op implementations in codegen. """ def __init__(self, vname: str, default): self._key: str = f"__torchinductor_{vname}" self._default = default def _set_handler(self, value): prior = self._get_handler() setattr(threadlocal, self._key, value) @contextmanager def ctx(): try: yield finally: self._set_handler(prior) return ctx() def _get_handler(self): try: return getattr(threadlocal, self._key) except AttributeError: return self._default() def __getattr__(self, name): return getattr(self._get_handler(), name) class NullHandler: pass def _arg_str(a) -> str: if isinstance(a, sympy.Expr): return sympy_str(a) return str(a) class MockHandler: def __getattr__(self, name): if name == "name": return "MockHandler" def inner(*args, **kwargs): fargs = [_arg_str(a) for a in args] fargs.extend(f"{k}={v}" for k, v in kwargs.items()) return f"ops.{name}({', '.join(fargs)})" return inner @staticmethod def masked(mask, body, other) -> str: return f"ops.masked({mask}, {body()}, {other})" @staticmethod def indirect_indexing(index_var, size, check=True) -> sympy.Symbol: return sympy_symbol(f"({str(index_var)})") @classmethod def _init_cls(cls): def make_handler(format_string): @staticmethod # type: ignore[misc] def inner(*args): return format_string.format(*args) return inner for name, format_string in chain( magic_methods.items(), inplace_methods.items() ): setattr(cls, name, make_handler(format_string)) class KernelFormatterHandler: def __init__(self, parent_handler): self.parent_handler = parent_handler self.output = IndentedBuffer(1) self.var_counter = itertools.count() @staticmethod def ir_to_string(ir_fn, index, rindex=None) -> str: from .ir import FlexibleLayout args = [index, rindex] if rindex is not None else [index] names = ["index", "rindex"] if rindex is not None else ["index"] formatter = KernelFormatterHandler(MockHandler()) with formatter.output.indent(-1): formatter.output.writeline(f"def inner_fn({', '.join(names)}):") for name, arg in zip(names, args): if arg: lhs = ", ".join( [ str("_" if isinstance(v, (int, sympy.Integer)) else v) for v in arg ] ) formatter.output.writeline(f"{lhs} = {name}") with V.set_ops_handler(formatter), patch.object( # type: ignore[call-arg] FlexibleLayout, "allow_indexing", True ): result = ir_fn(*args) return formatter.getvalue(result) def __getattr__(self, name) -> Callable[..., str]: def inner(*args, **kwargs): line = getattr(self.parent_handler, name)(*args, **kwargs) if name == "indirect_indexing": return line # replace line with a new variable name varname = f"tmp{next(self.var_counter)}" self.output.writeline(f"{varname} = {line}") return varname return inner def reduction( self, dtype, src_dtype, reduction_type, value ) -> Union[tuple[str, ...], str]: line = self.parent_handler.reduction(dtype, src_dtype, reduction_type, value) num_values = reduction_num_outputs(reduction_type) varnames = [f"tmp{next(self.var_counter)}" for _ in range(num_values)] self.output.writeline(f"{','.join(varnames)} = {line}") return tuple(varnames) if num_values > 1 else varnames[0] def getvalue(self, result): self.output.writeline(f"return {result}") return self.output.getvalue() class WrapperHandler: def __init__(self, inner): self._inner = inner def __getattr__(self, item): return getattr(self._inner, item) MockHandler._init_cls() _ops = Virtualized("ops", MockHandler) _graph = Virtualized("graph", NullHandler) _real_inputs = Virtualized("real_inputs", NullHandler) _fake_mode = Virtualized("fake_mode", NullHandler) _kernel = Virtualized("kernel", NullHandler) _debug = Virtualized("debug", NullHandler) _interpreter = Virtualized("interpreter", NullHandler) _aot_compilation = Virtualized("aot_compilation", NullHandler) class OpsValue: """The return type of most ops calls. This exists so we can overload magic methods, and write mathematical expressions much more fluently. So instead of ops.add(ops.mul(ops.mul(ops.sub(ops.mul(_Ap2, x), _Ap3), x), x), _1) we can write (_Ap2 * x - _Ap3) * x * x + _1 """ value: Any def __init__(self, value): self.value = value def __str__(self): return str(self.value) def __repr__(self): return f"OpsValue({self.value!r})" def __add__(self, other): return ops.add(self, other) def __mul__(self, other): return ops.mul(self, other) def __sub__(self, other): return ops.sub(self, other) def __neg__(self): return ops.neg(self) def __truediv__(self, other): return ops.truediv(self, other) def __floordiv__(self, other): return ops.floordiv(self, other) def __mod__(self, other): return ops.mod(self, other) def __pow__(self, other): return ops.pow(self, other) class OpsWrapper: """This wraps any returned IR values into an `OpsValue` instance, so that we can overload the magic methods for writing mathematical expressions fluently. """ def __getattr__(self, name): def inner(*args, **kwargs): new_args = [OpsWrapper._unwrap(a) for a in args] new_kwargs = {k: OpsWrapper._unwrap(v) for k, v in kwargs.items()} return OpsWrapper._wrap(getattr(_ops, name)(*new_args, **new_kwargs)) return inner @staticmethod def _unwrap(x): if isinstance(x, (list, tuple)): return tuple(OpsWrapper._unwrap(v) for v in x) if isinstance(x, OpsValue): return x.value return x @staticmethod def _wrap(x): if isinstance(x, (list, tuple)): return tuple(OpsValue(v) for v in x) return OpsValue(x) @staticmethod def indirect_indexing(index, size, check=True): # Returns a sympy value, not IR value index = OpsWrapper._unwrap(index) return _ops.indirect_indexing(index, size, check) ops = OpsWrapper() class _V: MockHandler = MockHandler KernelFormatterHandler = KernelFormatterHandler WrapperHandler = WrapperHandler set_ops_handler: Callable[[Any], Any] = _ops._set_handler get_ops_handler: Callable[[], Any] = _ops._get_handler set_graph_handler: Callable[[Any], Any] = _graph._set_handler set_real_inputs: Callable[[Any], Any] = _real_inputs._set_handler get_real_inputs: Callable[[], Any] = _real_inputs._get_handler set_fake_mode: Callable[[Any], Any] = _fake_mode._set_handler get_fake_mode: Callable[[], Any] = _fake_mode._get_handler set_kernel_handler: Callable[[Any], Any] = _kernel._set_handler set_debug_handler: Callable[[Any], Any] = _debug._set_handler set_interpreter_handler: Callable[[Any], Any] = _interpreter._set_handler set_aot_compilation: Callable[[Any], Any] = _aot_compilation._set_handler get_aot_compilation: Callable[[], Any] = _aot_compilation._get_handler @property def ops(self) -> MockHandler: # type: ignore[valid-type] """The operator handler specific to the current codegen task""" return _ops._get_handler() @property def graph(self): """The graph currently being generated""" return _graph._get_handler() @property def real_inputs(self): """non-fake example inputs""" return _real_inputs._get_handler() @property def fake_mode(self): """The graph currently being generated""" return _fake_mode._get_handler() @property def kernel(self): """The kernel currently being generated""" return _kernel._get_handler() @property def debug(self): return _debug._get_handler() @property def interpreter(self): return _interpreter._get_handler() @property def aot_compilation(self): return _aot_compilation._get_handler() V = _V()