#!/usr/bin/env python3 """This script runs cuda-memcheck on the specified unit test. Each test case is run in its isolated process with a timeout so that: 1) different test cases won't influence each other, and 2) in case of hang, the script would still finish in a finite amount of time. The output will be written to a log file result.log Example usage: python run_cuda_memcheck.py ../test_torch.py 600 Note that running cuda-memcheck could be very slow. """ import asyncio import torch import multiprocessing import argparse import subprocess import tqdm import os import sys import cuda_memcheck_common as cmc ALL_TESTS = [] GPUS = torch.cuda.device_count() # parse arguments parser = argparse.ArgumentParser(description="Run isolated cuda-memcheck on unit tests") parser.add_argument('filename', help="the python file for a test, such as test_torch.py") parser.add_argument('timeout', type=int, help='kill the test if it does not terminate in a certain amount of seconds') parser.add_argument('--strict', action='store_true', help='Whether to show cublas/cudnn errors. These errors are ignored by default because' 'cublas/cudnn does not run error-free under cuda-memcheck, and ignoring these errors') parser.add_argument('--nproc', type=int, default=multiprocessing.cpu_count(), help='Number of processes running tests, default to number of cores in the system') parser.add_argument('--gpus', default='all', help='GPU assignments for each process, it could be "all", or : separated list like "1,2:3,4:5,6"') parser.add_argument('--ci', action='store_true', help='Whether this script is executed in CI. When executed inside a CI, this script fails when ' 'an error is detected. Also, it will not show tqdm progress bar, but directly print the error' 'to stdout instead.') parser.add_argument('--nohang', action='store_true', help='Treat timeout as success') parser.add_argument('--split', type=int, default=1, help='Split the job into pieces') parser.add_argument('--rank', type=int, default=0, help='Which piece this process should pick') args = parser.parse_args() # Filters that ignores cublas/cudnn errors # TODO (@zasdfgbnm): When can we remove this? Will cublas/cudnn run error-free under cuda-memcheck? def is_ignored_only(output): try: report = cmc.parse(output) except cmc.ParseError: # in case the simple parser fails parsing the output of cuda memcheck # then this error is never ignored. return False count_ignored_errors = 0 for e in report.errors: if 'libcublas' in ''.join(e.stack) or 'libcudnn' in ''.join(e.stack) or 'libcufft' in ''.join(e.stack): count_ignored_errors += 1 return count_ignored_errors == report.num_errors # Set environment PYTORCH_CUDA_MEMCHECK=1 to allow skipping some tests os.environ['PYTORCH_CUDA_MEMCHECK'] = '1' # Discover tests: # To get a list of tests, run: # pytest --setup-only test/test_torch.py # and then parse the output proc = subprocess.Popen(['pytest', '--setup-only', args.filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() lines = stdout.decode().strip().splitlines() for line in lines: if '(fixtures used:' in line: line = line.strip().split()[0] line = line[line.find('::') + 2:] line = line.replace('::', '.') ALL_TESTS.append(line) # Do a simple filtering: # if 'cpu' or 'CPU' is in the name and 'cuda' or 'CUDA' is not in the name, then skip it def is_cpu_only(name): name = name.lower() return ('cpu' in name) and "cuda" not in name ALL_TESTS = [x for x in ALL_TESTS if not is_cpu_only(x)] # Split all tests into chunks, and only on the selected chunk ALL_TESTS.sort() chunk_size = (len(ALL_TESTS) + args.split - 1) // args.split start = chunk_size * args.rank end = chunk_size * (args.rank + 1) ALL_TESTS = ALL_TESTS[start:end] # Run tests: # Since running cuda-memcheck on PyTorch unit tests is very slow, these tests must be run in parallel. # This is done by using the coroutine feature in new Python versions. A number of coroutines are created; # they create subprocesses and awaiting them to finish. The number of running subprocesses could be # specified by the user and by default is the same as the number of CPUs in the machine. # These subprocesses are balanced across different GPUs on the system by assigning one devices per process, # or as specified by the user progress = 0 if not args.ci: logfile = open('result.log', 'w') progressbar = tqdm.tqdm(total=len(ALL_TESTS)) else: logfile = sys.stdout # create a fake progress bar that does not display anything class ProgressbarStub: def update(self, *args): return progressbar = ProgressbarStub() async def run1(coroutine_id): global progress if args.gpus == 'all': gpuid = coroutine_id % GPUS else: gpu_assignments = args.gpus.split(':') assert args.nproc == len(gpu_assignments), 'Please specify GPU assignment for each process, separated by :' gpuid = gpu_assignments[coroutine_id] while progress < len(ALL_TESTS): test = ALL_TESTS[progress] progress += 1 cmd = f'CUDA_VISIBLE_DEVICES={gpuid} cuda-memcheck --error-exitcode 1 python {args.filename} {test}' proc = await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) try: stdout, stderr = await asyncio.wait_for(proc.communicate(), args.timeout) except asyncio.TimeoutError: print('Timeout:', test, file=logfile) proc.kill() if args.ci and not args.nohang: sys.exit("Hang detected on cuda-memcheck") else: if proc.returncode == 0: print('Success:', test, file=logfile) else: stdout = stdout.decode() stderr = stderr.decode() should_display = args.strict or not is_ignored_only(stdout) if should_display: print('Fail:', test, file=logfile) print(stdout, file=logfile) print(stderr, file=logfile) if args.ci: sys.exit("Failure detected on cuda-memcheck") else: print('Ignored:', test, file=logfile) del proc progressbar.update(1) async def main(): tasks = [asyncio.ensure_future(run1(i)) for i in range(args.nproc)] for t in tasks: await t if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())