from __future__ import absolute_import, division, print_function, unicode_literals import copy import itertools import torch import torch.nn as nn import torch.nn.intrinsic as nni import torch.nn.intrinsic.quantized as nniq import torch.nn.intrinsic.qat as nniqat import torch.nn.quantized as nnq import torch.nn.quantized.dynamic as nnqd from .QConfig import default_dynamic_qconfig, float16_dynamic_qconfig import torch.nn.qat as nnqat import warnings class QuantStub(nn.Module): r"""Quantize stub module, before calibration, this is same as an observer, it will be swapped as `nnq.Quantize` in `convert`. Args: qconfig: quantization configuration for the tensor, if qconfig is not provided, we will get qconfig from parent modules """ def __init__(self, qconfig=None): super(QuantStub, self).__init__() if qconfig: self.qconfig = qconfig def forward(self, x): return x class DeQuantStub(nn.Module): r"""Dequantize stub module, before calibration, this is same as identity, this will be swapped as `nnq.DeQuantize` in `convert`. """ def __init__(self): super(DeQuantStub, self).__init__() def forward(self, x): return x DEFAULT_SKIP_LIST = [nn.Dropout, nn.Identity, nn.MaxPool2d, nn.AvgPool2d, nn.AdaptiveAvgPool2d, DeQuantStub] def _propagate_qconfig_helper(module, qconfig_dict, skip_list=DEFAULT_SKIP_LIST, qconfig_parent=None, prefix=''): r"""This is a helper function for `propagate_qconfig_` Args: module: input module qconfig_dict: dictionary that maps from name of submodule to quantization configuration qconfig_parent: quantization config of parent module, we will fallback to this config when there is no specified config for current module prefix: corresponding prefix of the current module, used as key in qconfig_dict Return: None, module is modified inplace with qconfig attached """ if type(module) in skip_list: module.qconfig = None if not hasattr(module, 'qconfig'): module.qconfig = qconfig_parent if qconfig_dict: if prefix in qconfig_dict: module.qconfig = qconfig_dict[prefix] elif type(module) in qconfig_dict: module.qconfig = qconfig_dict[type(module)] # Don't quantize empty Sequential, empty Sequential is same as # Identity, but we can't put Sequential into skip list because # we also have non-empty Sequential and the qconfig needs to # be propagated to child in that case # TODO: Add test if len(module._modules) == 0 and type(module) == nn.Sequential: module.qconfig = None for name, child in module.named_children(): module_prefix = prefix + '.' + name if prefix else name _propagate_qconfig_helper(child, qconfig_dict, skip_list, module.qconfig, module_prefix) # TODO(jerryzh): expose skip_list def propagate_qconfig_(module, qconfig_dict=None): r"""Propagate qconfig through the module hierarchy and assign `qconfig` attribute on each leaf module Args: module: input module qconfig_dict: dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute) Return: None, module is modified inplace with qconfig attached """ if qconfig_dict is None: qconfig_dict = {} _propagate_qconfig_helper(module, qconfig_dict) def _observer_forward_hook(self, input, output): r"""Forward hook that calls observer on the output """ return self.observer(output) def add_observer_(module): r"""Add observer for the leaf child of the module. This function insert observer module to all leaf child module that has a valid qconfig attribute. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize Return: None, module is modified inplace with added observer modules and forward_hooks """ for child in module.children(): if type(child) == nnq.FloatFunctional: if hasattr(child, 'qconfig') and child.qconfig is not None: child.observer = child.qconfig.activation() else: add_observer_(child) # Insert observers only for leaf nodes, note that this observer is for # the output of the module, for input QuantStub will observe them if hasattr(module, 'qconfig') and module.qconfig is not None and \ len(module._modules) == 0: # observer and hook will be gone after we swap the module module.add_module('observer', module.qconfig.activation()) module.register_forward_hook(_observer_forward_hook) class QuantWrapper(nn.Module): r"""A wrapper class that wraps the input module, adds QuantStub and DeQuantStub and surround the call to module with call to quant and dequant modules. This is used by the `quantization` utility functions to add the quant and dequant modules, before `convert` function `QuantStub` will just be observer, it observes the input tensor, after `convert`, `QuantStub` will be swapped to `nnq.Quantize` which does actual quantization. Similarly for `DeQuantStub`. """ def __init__(self, module): super(QuantWrapper, self).__init__() qconfig = module.qconfig if hasattr(module, 'qconfig') else None self.add_module('quant', QuantStub(qconfig)) self.add_module('dequant', DeQuantStub()) self.add_module('module', module) self.train(module.training) def forward(self, X): X = self.quant(X) X = self.module(X) return self.dequant(X) def add_quant_dequant(module): r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig Note that this function will modify the children of module inplace and it can return a new module which wraps the input module as well. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize Return: Either the inplace modified module with submodules wrapped in `QuantWrapper` based on qconfig or a new `QuantWrapper` module which wraps the input module, the latter case only happens when the input module is a leaf module and we want to quantize it. """ if len(module._modules) == 0 and hasattr(module, 'qconfig') and module.qconfig: return QuantWrapper(module) for name, child in module.named_children(): module._modules[name] = add_quant_dequant(child) return module def prepare(model, qconfig_dict=None, inplace=False): r"""Prepares a copy of the model for quantization calibration or quantization-aware training. Quantization configuration can be passed as an `qconfig_dict` or assigned preemptively to individual submodules in `.qconfig` attribute. The model will be attached with observer or fake quant modules, and qconfig will be propagated. Args: model: input model to be modified in-place qconfig_dict: dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute) inplace: carry out model transformations in-place, the original module is mutated """ if not inplace: model = copy.deepcopy(model) propagate_qconfig_(model) # sanity check common API misusage if not any(hasattr(m, 'qconfig') and m.qconfig for m in model.modules()): warnings.warn("None of the submodule got qconfig applied. Make sure you " "passed correct configuration through `qconfig_dict` or " "by assigning the `.qconfig` attribute directly on submodules") add_observer_(model) return model # Map for swapping float module to quantized ones DEFAULT_MODULE_MAPPING = { nn.Linear: nnq.Linear, nn.ReLU: nnq.ReLU, nn.Conv2d: nnq.Conv2d, QuantStub: nnq.Quantize, DeQuantStub: nnq.DeQuantize, # Wrapper Modules: nnq.FloatFunctional: nnq.QFunctional, # Intrinsic modules: nni.ConvReLU2d: nniq.ConvReLU2d, nni.LinearReLU: nniq.LinearReLU, nniqat.ConvReLU2d: nniq.ConvReLU2d, nniqat.LinearReLU: nniq.LinearReLU, nniqat.ConvBn2d: nnq.Conv2d, nniqat.ConvBnReLU2d: nniq.ConvReLU2d, # QAT modules: nnqat.Linear: nnq.Linear, nnqat.Conv2d: nnq.Conv2d, } # Map for swapping float module to qat modules DEFAULT_QAT_MODULE_MAPPING = { nn.Linear: nnqat.Linear, nn.Conv2d: nnqat.Conv2d, # Intrinsic modules: nni.ConvBn2d: nniqat.ConvBn2d, nni.ConvBnReLU2d: nniqat.ConvBnReLU2d, nni.ConvReLU2d: nniqat.ConvReLU2d, nni.LinearReLU: nniqat.LinearReLU } DEFAULT_DYNAMIC_MODULE_MAPPING = { nn.Linear: nnqd.Linear, nn.LSTM: nnqd.LSTM, } def quantize(model, run_fn, run_args, mapping=DEFAULT_MODULE_MAPPING, inplace=False): r"""Converts a float model to quantized model. First it will prepare the model for calibration or training, then it calls `run_fn` which will run the calibration step or training step, after that we will call `convert` which will convert the model to a quantized model. Args: model: input model run_fn: a function for evaluating the prepared model, can be a function that simply runs the prepared model or a training loop run_args: positional arguments for `run_fn` inplace: carry out model transformations in-place, the original module is mutated mapping: correspondence between original module types and quantized counterparts Return: Quantized model. """ if not inplace: model = copy.deepcopy(model) model.eval() prepare(model, inplace=True) run_fn(model, run_args) convert(model, mapping, inplace=True) return model def quantize_dynamic(model, qconfig=None, dtype=torch.qint8, mapping=DEFAULT_DYNAMIC_MODULE_MAPPING, inplace=False): r"""Converts a float model to dynamic (i.e. weights-only) quantized model. Replaces specified modules with dynamic weight-only quantized versions and output the quantized model. For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization by default is performed for layers with large weights size - i.e. Linear and RNN variants. Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`. If `qconfig` is provided, the `dtype` argument is ignored. Args: module: input model qconfig: Either: * A dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute). Entries in the dictionary need to be QConfigDynamic instances. * A set of types and/or submodule names to apply dynamic quantization to, in which case the `dtype` argument is used to specifiy the bit-width inplace: carry out model transformations in-place, the original module is mutated mapping: maps type of a submodule to a type of corresponding dynamically quantized version with which the submodule needs to be replaced """ if qconfig is None: if dtype == torch.qint8: qconfig = { nn.Linear : default_dynamic_qconfig, nn.LSTM : default_dynamic_qconfig, } elif dtype == torch.float16: qconfig = { # TODO: uncomment when float16 Linear support is added # nn.Linear : default_dynamic_qconfig, nn.LSTM : float16_dynamic_qconfig, } else: raise ValueError( "Don't know how to quantize with default settings for {}. Provide full qconfig please".format(dtype)) elif isinstance(qconfig, set): if dtype is torch.qint8: default_qconfig = default_dynamic_qconfig elif dtype is torch.float16: default_qconfig = float16_dynamic_qconfig else: raise RuntimeError('Unknown dtype specified for quantize_dynamic: ', str(dtype)) qconfig = dict(zip(qconfig, itertools.repeat(default_qconfig))) if not inplace: model = copy.deepcopy(model) model.eval() propagate_qconfig_(model, qconfig) convert(model, mapping, inplace=True) return model def prepare_qat(model, mapping=DEFAULT_QAT_MODULE_MAPPING, inplace=False): model = prepare(model, inplace=inplace) convert(model, mapping, inplace=True) return model def quantize_qat(model, run_fn, run_args, inplace=False): r"""Do quantization aware training and output a quantized model Args: model: input model run_fn: a function for evaluating the prepared model, can be a function that simply runs the prepared model or a training loop run_args: positional arguments for `run_fn` Return: Quantized model. """ if not inplace: model = copy.deepcopy(model) model.train() prepare_qat(model, inplace=True) run_fn(model, run_args) convert(model, inplace=True) return model def convert(module, mapping=DEFAULT_MODULE_MAPPING, inplace=False): r"""Converts the float module with observers (where we can get quantization parameters) to a quantized module. Args: module: calibrated module with observers mapping: a dictionary that maps from float module type to quantized module type, can be overwrritten to allow swapping user defined Modules inplace: carry out model transformations in-place, the original module is mutated """ if not inplace: module = copy.deepcopy(module) reassign = {} # TODO(jerryzh): remove after deciding on the impl of intrinsic modules # This is required because intrinsic modules right now are implemented as # nn.Sequential and we don't want to swap their constituents SWAPPABLE_MODULES = (nni.ConvBn2d, nni.ConvBnReLU2d, nni.LinearReLU, nni.ConvReLU2d) for name, mod in module.named_children(): if type(mod) not in SWAPPABLE_MODULES: convert(mod, mapping, inplace=True) reassign[name] = swap_module(mod, mapping) for key, value in reassign.items(): module._modules[key] = value return module def swap_module(mod, mapping): r"""Swaps the module if it has a quantized counterpart and it has an `observer` attached. Args: mod: input module mapping: a dictionary that maps from nn module to nnq module Return: The corresponding quantized module of `mod` """ new_mod = mod # Always replace dequantstub with dequantize if hasattr(mod, 'qconfig') and mod.qconfig is not None or type(mod) == DeQuantStub: if type(mod) in mapping: new_mod = mapping[type(mod)].from_float(mod) return new_mod def get_observer_dict(mod, target_dict, prefix=""): r"""Traverse the modules and save all observers into dict. This is mainly used for quantization accuracy debug Args: mod: the top module we want to save all observers prefix: the prefix for the current module target_dict: the dictionary used to save all the observers """ def get_prefix(prefix): return prefix if prefix == "" else prefix + '.' if hasattr(mod, 'observer'): target_dict[get_prefix(prefix) + 'observer'] = mod.observer for name, child in mod.named_children(): module_prefix = get_prefix(prefix) + name if prefix else name get_observer_dict(child, target_dict, module_prefix)