#include #include namespace torch { namespace autograd { VariableInfo::VariableInfo(const Variable& var) : layout(var.layout()) , device(var.device()) , scalar_type(var.scalar_type()) , size(var.sizes().vec()) , requires_grad(var.requires_grad()) { } Variable VariableInfo::zeros(at::OptionalDeviceGuard& device_guard) const { return at::zeros(size, at::TensorOptions(scalar_type).device(device).layout(layout)); } variable_list _wrap_outputs(const variable_list &input_vars, const std::unordered_set &non_differentiable, const std::unordered_set &dirty_inputs, const at::ArrayRef raw_outputs, const std::shared_ptr &cdata) { std::unordered_set inputs; inputs.reserve(input_vars.size()); for (auto& var : input_vars) { inputs.emplace(var.unsafeGetTensorImpl()); } // Sets the grad_fn and output_nr of an output Variable. auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified, bool is_differentiable) { if (!is_differentiable) { if (!var.requires_grad()) { return; } // NB: we don't support returning non-differentiable views that could require grad if (var.is_view()) { throw std::runtime_error("Returning Variables sharing storage with other Variables " "that require grad is not supported in Python functions. " "Please submit a feature request if you hit this error."); } // Return detached aliases of inputs, instead of changing their requires_grad // property. if (is_input) { var = var.detach(); } else { var.detach_(); } } else if (is_modified) { if (var.is_leaf() && var.requires_grad()) { throw std::runtime_error("a leaf Variable that requires grad has been used in an in-place operation."); } // If the input was modified, transplant the grad_fn in the graph: // grad_fn <- variable <- self ==> grad_fn <- self <- variable var.grad().reset(); impl::clear_hooks(var); if (auto grad_acc_fn = impl::try_get_grad_accumulator(var)) { auto grad_acc = dynamic_cast(grad_acc_fn.get()); grad_acc->variable.reset(); } if (cdata) { impl::rebase_history(var, {cdata, output_nr}); } } else if (is_input) { // An input has been returned, but it wasn't modified. Return it as a view // so that we can attach a new grad_fn to the Variable. var = var.view_as(var); impl::set_gradient_edge(var, {cdata, output_nr}); } else if (cdata) { impl::set_gradient_edge(var, {cdata, output_nr}); } }; int num_outputs = raw_outputs.size(); std::vector outputs; outputs.reserve(num_outputs); for (auto i = 0; i < num_outputs; ++i) { auto out_tensor_impl = raw_outputs[i].unsafeGetTensorImpl(); bool is_input = inputs.count(out_tensor_impl) > 0; bool is_modified = dirty_inputs.count(out_tensor_impl) > 0; bool is_differentiable = cdata && non_differentiable.count(out_tensor_impl) == 0; Variable var = raw_outputs[i]; if (cdata) { auto output_nr = cdata->add_input_metadata(var); AT_ASSERT(i == (int)output_nr); } set_history(var, i, is_input, is_modified, is_differentiable); outputs.emplace_back(var); } return outputs; } void check_variable_result(const Variable& original, const Variable& result, std::string hook_name) { if (original.type() != result.type()) { std::stringstream ss; ss << "hook '" << hook_name << "' has changed the type of value ("; ss << "was " << original.toString() << " got "; ss << result.toString() << ")"; throw std::runtime_error(ss.str()); } if (original.is_cuda() != result.is_cuda()) { std::stringstream ss; ss << "hook '" << hook_name << "' has changed the type of value"; if (original.is_cuda()) { ss << " (was CUDA tensor got CPU tensor)"; } else { ss << " (was CPU tensor got CUDA tensor)"; } throw std::runtime_error(ss.str()); } if (original.sizes().vec() != result.sizes().vec()) { std::stringstream ss; ss << "hook '" << hook_name << "' has changed the size of value"; throw std::runtime_error(ss.str()); } } void AutogradContext::save_for_backward(variable_list to_save) { to_save_ = std::move(to_save); } // The logic for handling saved variables here is the same as python_function.cpp // See _save_variables() and unpack_saved_variables() void AutogradContext::save_variables() { saved_variables_.clear(); auto ptr = grad_fn_.lock(); for (const auto& var : to_save_) { // Allow empty variables to be saved if (var.defined()) { bool is_output = var.grad_fn().get() == ptr.get(); saved_variables_.emplace_back(var, is_output); } else { saved_variables_.emplace_back(); } } to_save_.clear(); } variable_list AutogradContext::get_saved_variables() const { TORCH_CHECK(!has_freed_buffers_, ERR_BACKWARD_TWICE); variable_list saved; saved.reserve(saved_variables_.size()); auto ptr = grad_fn_.lock(); TORCH_INTERNAL_ASSERT(ptr); for (auto& var : saved_variables_) { saved.push_back(var.unpack(ptr)); } return saved; } void AutogradContext::mark_dirty(const variable_list &inputs) { dirty_inputs_.clear(); dirty_inputs_.reserve(inputs.size()); for(auto& var : inputs) { dirty_inputs_.insert(var.unsafeGetTensorImpl()); } } void AutogradContext::mark_non_differentiable(const variable_list &outputs) { non_differentiable_.clear(); non_differentiable_.reserve(outputs.size()); for(auto& var : outputs) { non_differentiable_.insert(var.unsafeGetTensorImpl()); } } const std::unordered_set& AutogradContext::get_dirty() const { return dirty_inputs_; } const std::unordered_set& AutogradContext::get_non_differentiable() const { return non_differentiable_; } }} // namespace torch::autograd