#include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace { void OptimizeGraph(std::shared_ptr& graph) { Inline(*graph); ConstantPropagation(graph); Canonicalize(graph); ConstantPropagation(graph); RemoveTensorMutation(graph); ConstantPropagation(graph); } void CheckGraphEligibility(const std::shared_ptr& graph) { for (auto n : graph->nodes()) { if (n->kind() == c10::Symbol::fromQualString("prim::GetAttr")) { throw std::runtime_error("Cannot accelerate unfrozen graphs"); } } } // remove unused input 0 from graph void RemoveSelfFromGraphInput(std::shared_ptr& graph) { if (graph->inputs().at(0)->type()->is_module()) { TORCH_CHECK(!graph->inputs().at(0)->hasUses()); graph->eraseInput(0); } } // remove "self" from function schema std::unique_ptr RemoveSelfFromSchema( const c10::FunctionSchema& s) { TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self"); std::vector args({s.arguments().begin() + 1, s.arguments().end()}); return std::make_unique(s.cloneWithArguments(args)); } void AssignRegisters( const std::shared_ptr& graph, std::unordered_map& value_to_reg, std::vector& input_regs, std::vector& output_regs) { // assign register to Value* for (Value* input : graph->inputs()) { TORCH_CHECK(value_to_reg.count(input) == 0); size_t index = value_to_reg.size(); value_to_reg[input] = index; input_regs.push_back(index); } for (Node* node : graph->nodes()) { for (Value* input : node->inputs()) { TORCH_CHECK(value_to_reg.count(input) > 0); } for (Value* output : node->outputs()) { TORCH_CHECK( value_to_reg.count(output) == 0, "the graph needs to be in SSA form"); size_t index = value_to_reg.size(); value_to_reg[output] = index; } } TORCH_CHECK(graph->outputs().size() > 0); for (Value* output : graph->outputs()) { TORCH_CHECK(value_to_reg.count(output) > 0); output_regs.push_back(value_to_reg[output]); } } void DeduceInternalBlobs( const std::shared_ptr& graph, const std::unordered_map& value_to_reg, std::vector& internals) { std::unordered_set outputs{graph->outputs().begin(), graph->outputs().end()}; for (Node* node : graph->nodes()) { if (node->kind() != prim::Constant) { for (Value* output : node->outputs()) { if (outputs.count(output) == 0) { internals.push_back(value_to_reg.at(output)); } } } } } } // namespace void InferenceModule::init() { OptimizeGraph(graph); CheckGraphEligibility(graph); RemoveSelfFromGraphInput(graph); AssignRegisters(graph, value_to_reg, input_regs, output_regs); DeduceInternalBlobs(graph, value_to_reg, internals); } InferenceModule::InferenceModule(const torch::jit::Module& m) : module(m.copy()), graph(nullptr), schema(nullptr) { module.eval(); module = freeze_module(module); Method method = module.get_method("forward"); graph = method.graph(); const c10::FunctionSchema& s = method.function().getSchema(); schema = RemoveSelfFromSchema(s); init(); } InferenceModule::InferenceModule(std::shared_ptr g) : module(), graph(g), schema(nullptr) { init(); } StaticRuntime::StaticRuntime( const torch::jit::Module& m, const StaticRuntimeOptions& opts) : StaticRuntime(PrepareForStaticRuntime(m), opts) {} StaticRuntime::StaticRuntime( std::shared_ptr m, const StaticRuntimeOptions& opts) : module_(m), opts_(opts) { TORCH_CHECK( module_ != nullptr, "std::shared_ptr module_ cannot be nullptr") // initialize registers reg_.resize(module_->value_to_reg.size()); Graph* graph = module_->graph.get(); auto& value_to_reg = module_->value_to_reg; // fill workspace_ with constants and create ProcessedNodes for (Node* node : graph->nodes()) { if (node->kind() == prim::Constant) { TORCH_CHECK(node->output()->type()->kind() != FunctionType::Kind); reg_[value_to_reg[node->output()]] = toIValue(node->output()).value(); } else { std::vector input_regs, output_regs; for (Value* input : node->inputs()) { input_regs.push_back(value_to_reg[input]); } for (Value* output : node->outputs()) { output_regs.push_back(value_to_reg[output]); } nodes_.emplace_back(node, std::move(input_regs), std::move(output_regs)); } } } std::vector StaticRuntime::run( const std::vector& inps) const { std::vector stack; stack.resize(inps.size()); for (size_t i = 0; i < inps.size(); i++) { stack[i] = inps[i]; } c10::IValue v = run(stack, std::unordered_map()); std::vector out; if (v.isTuple()) { auto t = v.toTuple(); for (const auto& el : t->elements()) { out.emplace_back(el.toTensor()); } } else { out.emplace_back(v.toTensor()); } return out; } c10::IValue StaticRuntime::run( const std::vector& args, const std::unordered_map& kwargs) const { caffe2::MakeGuard([&] { if (opts_.cleanup_activations) { for (size_t i : module_->internals) { if (reg_[i].isTensor()) { // Temporary solution auto t = reg_[i].toTensor(); reg_[i] = at::empty({0}, t.options()); } } } }); std::vector stack(args); if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( module_->schema != nullptr, "Schema is not available. Consider creating the Static Runtime " "with StaticRuntime(const torch::jit::Module& m) instead."); module_->schema->checkAndNormalizeInputs(stack, kwargs); } for (size_t i = 0; i < stack.size(); i++) { Input(i) = stack[i]; } for (const auto& n : nodes_) { n.run(reg_); } return Output(0); } void StaticRuntime::benchmark( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) const { float time_per_iter = benchmark_model(args, kwargs, warmup_runs, main_runs); std::cout << "Static runtime ms per iter: " << time_per_iter << ". Iters per second: " << 1000.0 / time_per_iter << std::endl; IndividualMetrics results = benchmark_individual_ops(args, kwargs, warmup_runs, main_runs); std::cout << "Setting up took " << results.setup_time << " ms" << std::endl; for (size_t i = 0; i < nodes_.size(); i++) { const Node* node = nodes_[i].get_node(); std::cout << "Node #" << i << ": " << results.time_per_node[i] << " ms/iter, "; node->print(std::cout, 0, nullptr, false); } std::vector> time_per_node_type_vec{ results.time_per_node_type.begin(), results.time_per_node_type.end()}; std::sort( time_per_node_type_vec.begin(), time_per_node_type_vec.end(), [](auto& left, auto& right) { return left.second > right.second; }); std::cout << "Time per node type:" << std::endl; for (const auto& p : time_per_node_type_vec) { const std::string& kind = p.first; const double ms = p.second; std::cout << std::setw(15) << ms << " ms. " << std::setw(10) << results.percent_per_node_type[kind] << "%. " << kind << " (" << results.instances_per_node_type[kind] << " nodes)" << std::endl; } std::cout << std::setw(15) << results.total_time << " ms. in Total" << std::endl; } float StaticRuntime::benchmark_model( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) const { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); for (int i = 0; i < warmup_runs; i++) { run(args, kwargs); } caffe2::Timer timer; for (int i = 0; i < main_runs; i++) { run(args, kwargs); } float millis = timer.MilliSeconds(); return millis / static_cast(main_runs); } StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) const { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); IndividualMetrics results; results.total_time = 0.0; results.time_per_node.resize(nodes_.size(), 0); // setup time caffe2::Timer timer; std::vector stack(args); if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( module_->schema != nullptr, "Schema is not available. Consider creating the Static Runtime " "with StaticRuntime(const torch::jit::Module& m) instead."); module_->schema->checkAndNormalizeInputs(stack, kwargs); } for (size_t i = 0; i < stack.size(); i++) { Input(i) = stack[i]; } results.setup_time = timer.MilliSeconds(); // warmup runs for (int i = 0; i < warmup_runs; i++) { run(args, kwargs); } // main runs for (int i = 0; i < main_runs; i++) { for (size_t j = 0; j < nodes_.size(); j++) { timer.Start(); nodes_[j].run(reg_); float millis = timer.MilliSeconds(); results.time_per_node[j] += millis; } } // post processing for (size_t i = 0; i < nodes_.size(); i++) { const Node* node = nodes_[i].get_node(); std::string kind = std::string(node->kind().toQualString()); results.time_per_node[i] /= static_cast(main_runs); results.time_per_node_type[kind] += results.time_per_node[i]; results.instances_per_node_type[kind]++; results.total_time += results.time_per_node[i]; } for (const auto& p : results.time_per_node_type) { const std::string& kind = p.first; results.percent_per_node_type[kind] = p.second / results.total_time * 100; } return results; } ProcessedNode::ProcessedNode( Node* node, std::vector&& input_regs, std::vector&& output_regs) : node_(node), input_regs_(std::move(input_regs)), output_regs_(std::move(output_regs)) { if (node->kind() != prim::ListConstruct && node->kind() != prim::TupleConstruct && node->kind() != prim::ListUnpack) { const Operator& op = node->getOperator(); TORCH_CHECK(op.hasOperation()); op_ = op.getOperation(node); } if (canRunOutOfPlace(node)) { fn_ = getOutOfPlaceOperation(node); } } void ProcessedNode::run(std::vector& reg) const { if (!fn_) { std::vector stack; const size_t size = node_->inputs().size(); stack.reserve(size); for (size_t i = 0; i < size; i++) { stack.emplace_back(Input(i, reg)); } if (op_) { op_->operator()(&stack); } else { if (node_->kind() == prim::ListConstruct) { listConstruct( stack, node_->output()->type()->expect(), node_->inputs().size()); } else if (node_->kind() == prim::TupleConstruct) { bool named = node_->output()->type()->expect()->name().has_value(); if (named) { namedTupleConstruct( stack, node_->output()->type()->expect(), node_->inputs().size()); } else { tupleConstruct(stack, node_->inputs().size()); } } else if (node_->kind() == prim::ListUnpack) { size_t num_outputs = node_->outputs().size(); listUnpack(stack, num_outputs); } else { TORCH_CHECK(0, "Unhandled operation!", node_->kind().toQualString()); } } DCHECK_EQ(stack.size(), node_->outputs().size()); for (auto i = 0; i < node_->outputs().size(); i++) { Output(i, reg) = std::move(stack[i]); } } else { fn_->operator()(this, reg); } } } // namespace jit } // namespace torch